334 research outputs found

    Bone versus breast density

    Get PDF
    The common link with oestrogen levels suggests that bone mineral density and mammographic density might also be linked. One study found weak support for this, but another study failed to provide confirmation. Overall, the relationship is very weak, if it exists at all. Other factors such as weight-bearing exercise, which have opposing impacts on these variables, may have a more dominant effect

    Sex steroids, growth factors and mammographic density: a cross-sectional study of UK postmenopausal Caucasian and Afro-Caribbean women

    Get PDF
    INTRODUCTION: Sex steroids, insulin-like growth factors (IGFs) and prolactin are breast cancer risk factors but whether their effects are mediated through mammographic density, one of the strongest risk factors for breast cancer, is unknown. If such a hormonal basis of mammographic density exists, hormones may underlie ethnic differences in both mammographic density and breast cancer incidence rates. METHODS: In a cross-sectional study of 270 postmenopausal Caucasian and Afro-Caribbean women attending a population-based breast screening service in London, UK, we investigated whether plasma biomarkers (oestradiol, oestrone, sex hormone binding globulin (SHBG), testosterone, prolactin, leptin, IGF-I, IGF-II and IGF binding protein 3 (IGFBP3)) were related to and explained ethnic differences in mammographic percent density, dense area and nondense area, measured in Cumulus using the threshold method. RESULTS: Mean levels of oestrogens, leptin and IGF-I:IGFBP3 were higher whereas SHBG and IGF-II:IGFBP3 were lower in Afro-Caribbean women compared with Caucasian women after adjustment for higher mean body mass index (BMI) in the former group (by 3.2 kg/m(2) (95% confidence interval (CI): 1.8, 4.5)). Age-adjusted percent density was lower in Afro-Caribbean compared with Caucasian women by 5.4% (absolute difference), but was attenuated to 2.5% (95% CI: -0.2, 5.1) upon BMI adjustment. Despite ethnic differences in biomarkers and in percent density, strong ethnic-age-adjusted inverse associations of oestradiol, leptin and testosterone with percent density were completely attenuated upon adjustment for BMI. There were no associations of IGF-I, IGF-II or IGFBP3 with percent density or dense area. We found weak evidence that a twofold increase in prolactin and oestrone levels were associated, respectively, with an increase (by 1.7% (95% CI: -0.3, 3.7)) and a decrease (by 2.0% (95% CI: 0, 4.1)) in density after adjustment for BMI. CONCLUSIONS: These findings suggest that sex hormone and IGF levels are not associated with BMI-adjusted percent mammographic density in cross-sectional analyses of postmenopausal women and thus do not explain ethnic differences in density. Mammographic density may still, however, be influenced by much higher premenopausal hormone levels

    Breast density predicts endocrine treatment outcome in the adjuvant setting

    Get PDF
    PMCID: PMC3680935See related research article by Kim et al., http://breast-cancer-research.com/content/14/4/R10

    Positive association between mammographic breast density and bone mineral density in the Postmenopausal Estrogen/Progestin Interventions Study

    Get PDF
    INTRODUCTION: Mammographic breast density is a strong independent risk factor for breast cancer. We hypothesized that demonstration of an association between mammographic breast density and bone mineral density (BMD) would suggest a unifying underlying mechanism influencing both breast density and BMD. METHODS: In a cross-sectional analysis of baseline data from the Postmenopausal Estrogen/Progestin Interventions Study (PEPI), participants were aged 45 to 64 years and were at least 1 year postmenopausal. Mammographic breast density (percentage of the breast composed of dense tissue), the outcome, was assessed with a computer-assisted percentage-density method. BMD, the primary predictor, was measured with dual-energy X-ray absorptiometry. Women quitting menopausal hormone therapy to join PEPI were designated recent hormone users. RESULTS: The mean age of the 594 women was 56 years. The average time since menopause was 5.6 years. After adjustment for age, body mass index, and cigarette smoking, in women who were not recent hormone users before trial enrollment (n = 415), mammographic density was positively associated with total hip (P = 0.04) and lumbar (P = 0.08) BMD. Mammographic density of recent hormone users (n = 171) was not significantly related to either total hip (P = 0.51) or lumbar (P = 0.44) BMD. In participants who were not recent hormone users, mammographic density was 4% greater in the highest quartile of total hip BMD than in the lowest. In participants who were not recent hormone users, mammographic density was 5% greater in the highest quartile of lumbar spine BMD than in the lowest. CONCLUSION: Mammographic density and BMD are positively associated in women who have not recently used postmenopausal hormones. A unifying biological mechanism may link mammographic density and BMD. Recent exogenous postmenopausal hormone use may obscure the association between mammographic density and BMD by having a persistent effect on breast tissue

    Breast density and polymorphisms in genes coding for CYP1A2 and COMT: the Multiethnic Cohort

    Get PDF
    BACKGROUND: Mammographic density is a strong predictor of breast cancer risk and is increased by hormone replacement therapy (HRT). Some associations with genetic polymorphisms in enzymes involved in estrogen metabolism have been described. This cross-sectional analysis examined the relation between mammographic density and the CYP1A2*1F and COMT Val(58 )Met polymorphisms among 332 breast cancer cases and 254 controls in the Hawaii component of the Multiethnic Cohort. METHODS: Mammographic density, before diagnosis in cases, was quantified by using a validated computer-assisted method. Blood samples were genotyped by standard PCR/RFLP methods. Adjusted mean percent density was calculated by genotype using mixed models with the unstructured covariance option. RESULTS: A positive association between the C allele in the CYP1A2*1F gene and percent density, but not the dense area, was suggested (p = 0.11). The relation was limited to controls (p = 0.045), postmenopausal women not using HRT (p = 0.08), and normal weight subjects (p = 0.046). We did not observe any relation between the COMT Val(58 )Met polymorphism and breast density. CONCLUSION: The lack of an association between the CYP1A2 genotype and the size of the dense areas suggests an effect on the non-dense, i.e., fatty breast tissue. The discrepancies among studies may be due to differential susceptibility; changes in enzyme activity as a result of the CYP1A2*1F polymorphism may influence breast tissue differently depending on hormonal status. Larger studies with the ability to look at interactions would be useful to elucidate the influence of genetic variation in CYP1A2 and COMT on the risk of developing breast cancer

    The reliability and validity of three non-radiological measures of thoracic kyphosis and their relations to the standing radiological Cobb angle

    Get PDF
    UnlabelledHyperkyphosis is implicated in a mounting list of negative outcomes, including higher mortality. Hyperkyphosis research is hindered due to difficulties inherent in its measurement. By showing that three clinical measures of kyphosis are suitable for use in large scale, longitudinal, hyperkyphosis studies, we will facilitate much needed research in this field.IntroductionThe objective of this study is to describe the reliability of three non-radiological kyphosis measures (Debrunner kyphosis angle, flexicurve kyphosis index, and flexicurve kyphosis angle) and their validity compared to the Cobb angle and to approximate a Cobb angle from non-radiological kyphosis measures.MethodsWe analyzed data from 113 participants aged ≥ 60 years with kyphosis angle ≥ 40°. Cobb angle was measured on a standing lateral thoracolumbar radiograph using bounds at T4 and T12. Non-radiological measures of kyphosis were made three times by a single rater and a 4th time by a blinded second rater.ResultsIntra- and inter-rater reliabilities for non-radiological assessments were high (intra-class correlations of 0.96 to 0.98) and did not differ from each other. Pearson correlations, estimating validity, ranged from 0.62 to 0.69 and did not differ. The Debrunner angle was close to the Cobb angle, with scaling factor of 1.067 and an offset of 5°. The Flexicurve kyphosis angle had to be scaled by 1.53 to obtain the equivalent Cobb angle. The scaling factor for the Flexicurve kyphosis index to Cobb angle was 315, with an offset of 5°. Compared to the measured Cobb angle, Cobb angles predicted using the non-radiological measures had similar magnitude errors (standard deviations of the differences ranging between 10.24 and 11.26).ConclusionsEach non-radiological measurement had similar reliability and validity. Low cost, ease of use, and robustness to variations in spine contour argue for the Flexicurve in longitudinal kyphosis assessments. The approximate conversion factors provided will permit translation of non-radiological measures to Cobb angles

    Haplotypes of intron 4 of the estrogen receptor alpha gene and hip fractures: a replication study in Caucasians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite their great impact, few genetic association studies have used hip fractures as an endpoint. However, the association of two polymorphisms on intron 4 of estrogen receptor alpha (<it>ESR1</it>) with hip fractures was recently reported in a Chinese population. The aim of this study was to investigate whether such association is also present in Caucasians.</p> <p>Methods</p> <p>We analyzed those two SNPs and another neighbour SNP located on the exon 4 of <it>ESR1 </it>in 787 patients with hip fractures and 953 controls from Spain.</p> <p>Results</p> <p>The allelic frequencies differed markedly from those reported in Asian populations. Nevertheless, haplotypes including the rs3020314 and rs1884051 loci in intron 4 showed a significant association with hip fractures (omnibus test p = 0.006 in the whole group and 0.00005 in women). In the sex-stratified analysis, the association was significant in females, but not in males. In women, the CA haplotype appeared to have a protective influence, being present in 6.5% of the controls, but only in 3% of patients with fractures (odds ratio 0.39; 95% confidence interval 0.26-0.59; estimated population preventive fraction 3.5%). The inclusion of the rs1801132 SNP of exon 4 further increased the statistical significance of the association (odds ratio 0.17; 95% CI 0.08-0.37; p = 0.00001). Each SNP appeared to contribute independently to the association. No genotype-related differences in gene expression were found in 42 femoral bone samples.</p> <p>Conclusions</p> <p>This study confirms the association of some polymorphisms in the region of exon 4/intron 4 of <it>ESR1 </it>and hip fractures in women. However, there are marked differences in allele frequencies between Asian and Caucasian populations.</p

    Background risk of breast cancer and the association between physical activity and mammographic density

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/ by/4.0

    Greatly increased occurrence of breast cancers in areas of mammographically dense tissue

    Get PDF
    INTRODUCTION: Mammographic density is a strong, independent risk factor for breast cancer. A critical unanswered question is whether cancers tend to arise in mammographically dense tissue (i.e. are densities directly related to risk or are they simply a marker of risk). This question cannot be addressed by studying invasive tumors because they manifest as densities and cannot be confidently differentiated from the densities representing fibrous and glandular tissue. We addressed this question by studying ductal carcinoma in situ (DCIS), as revealed by microcalcifications. METHOD: We studied the cranio-caudal and the mediolateral-oblique mammograms of 28 breasts with a solitary DCIS lesion. Two experienced radiologists independently judged whether the DCIS occurred in a mammographically dense area, and determined the density of different areas of the mammograms. RESULTS: It was not possible to determine whether the DCIS was or was not in a dense area for six of the tumors. Of the remaining 22 lesions, 21 occurred in dense tissue (test for difference from expected taken as the percentage of density of the 'mammographic quadrant' containing DCIS; P < 0.0001). A preponderance of DCIS (17 out of 28) occurred in the mammographic quadrant with the highest percentage density. CONCLUSION: DCIS occurs overwhelmingly in the mammographically dense areas of the breast, and pre-DCIS mammograms showed that this relationship was not brought about by the presence of the DCIS. This strongly suggests that some aspect of stromal tissue comprising the mammographically dense tissue directly influences the carcinogenic process in the local breast glandular tissue
    corecore