199 research outputs found

    Study of the Fast X-Ray Transient XTE J1901+014 Based on INTEGRAL, RXTE and ROSAT Data

    Get PDF
    The source XTE J1901+014 discovered by the RXTE observatory during an intense outburst of hard radiation and classified as a fast X-ray transient is studied. The source's spectral characteristics in the quiescent state have been investigated for the first time both in the soft X-ray energy range (0.6-20 keV) based on ROSAT and RXTE data and in the hard energy range (>20 keV) based on INTEGRAL data. A timing analysis of the source's properties has revealed weak nonperiodic bursts of activity on time scales of several tens of seconds and two intense (∌\sim0.5-1 Crab) outbursts more than several hundred seconds in duration. Certain assumptions about the nature of the object under study are made.Comment: 19 pages, 7 figure

    Invariant Sets and Explicit Solutions to a Third-Order Model for the Shearless Stratified Turbulent Flow

    Full text link
    We study dynamics of the shearless stratified turbulent flows. Using the method of differential constraints we find a class of explicit solutions to the problem under consideration and establish that the differential constraint obtained coincides with the well-known Zeman--Lumley model for stratified flows.Comment: arxiv version is already officia

    On the possible observational manifestation of supernova shock impact on the neutron star magnetosphere

    Full text link
    Impact of supernova explosion on the neutron star magnetosphere in a massive binary system is considered. The supernova shock striking the NS magnetosphere filled with plasma can lead to the formation of a magnetospheric tail with significant magnetic energy. The magnetic field reconnection in the current sheet formed can convert the magnetic energy stored in the tail into kinetic energy of accelerated charged particles. Plasma instabilities excited by beams of relativistic particles can lead to the formation of a short pulse of coherent radio emission with parameters similar to those of the observed bright extragalactic millisecond radio burst (Lorimer et al. 2007).Comment: 8 pages, Astron. Lett. in pres

    Low Luminosity States of the Black Hole Candidate GX~339--4. II. Timing Analysis

    Full text link
    Here we present timing analysis of a set of eight Rossi X-ray Timing Explorer (RXTE) observations of the black hole candidate GX 339-4 that were taken during its hard/low state. On long time scales, the RXTE All Sky Monitor data reveal evidence of a 240 day periodicity, comparable to timescales expected from warped, precessing accretion disks. On short timescales all observations save one show evidence of a persistent f approximately equal to 0.3 Hz QPO. The broad band (10^{-3}-10^2 Hz) power appears to be dominated by two independent processes that can be modeled as very broad Lorentzians with Q approximately less than 1. The coherence function between soft and hard photon variability shows that if these are truly independent processes, then they are individually coherent, but they are incoherent with one another. This is evidenced by the fact that the coherence function between the hard and soft variability is near unity between 0.005-10 Hz but shows evidence of a dip at f approximately equal to 1 Hz. This is the region of overlap between the broad Lorentzian fits to the PSD. Similar to Cyg X-1, the coherence also drops dramatically at frequencies approximately greater than 10 Hz. Also similar to Cyg X-1, the hard photon variability is seen to lag the soft photon variability with the lag time increasing with decreasing Fourier frequency. The magnitude of this time lag appears to be positively correlated with the flux of GX 339-4. We discuss all of these observations in light of current theoretical models of both black hole spectra and temporal variability.Comment: To Appear in the AStrophysical Journa

    Gamma-Ray Spectral States of Galactic Black Hole Candidates

    Full text link
    OSSE has observed seven transient black hole candidates: GRO J0422+32, GX339-4, GRS 1716-249, GRS 1009-45, 4U 1543-47, GRO J1655-40, and GRS 1915+105. Two gamma-ray spectral states are evident and, based on a limited number of contemporaneous X-ray and gamma-ray observations, these states appear to be correlated with X-ray states. The former three objects show hard spectra below 100 keV (photon number indices Gamma < 2) that are exponentially cut off with folding energy ~100 keV, a spectral form that is consistent with thermal Comptonization. This "breaking gamma-ray state" is the high-energy extension of the X-ray low, hard state. In this state, the majority of the luminosity is above the X-ray band, carried by photons of energy ~100 keV. The latter four objects exhibit a "power-law gamma-ray state" with a relatively soft spectral index (Gamma ~ 2.5-3) and no evidence for a spectral break. For GRO J1655-40, the lower limit on the break energy is 690 keV. GRS 1716-249 exhibits both spectral states, with the power-law state having significantly lower gamma-ray luminosity. The power-law gamma-ray state is associated with the presence of a strong ultrasoft X-ray excess (kT ~ 1 keV), the signature of the X-ray high, soft (or perhaps very high) state. The physical process responsible for the unbroken power law is not well understood, although the spectra are consistent with bulk-motion Comptonization in the convergent accretion flow.Comment: 27 pages, 3 figures, uses aaspp.sty and psfig.st

    The supergiant fast X-ray transient IGRJ18483-0311 in quiescence: XMM-Newton, Swift, and Chandra observations

    Get PDF
    IGR J18483-0311 was discovered with INTEGRAL in 2003 and later classified as a supergiant fast X-ray transient. It was observed in outburst many times, but its quiescent state is still poorly known. Here we present the results of XMM-Newton, Swift, and Chandra observations of IGRJ18483-0311. These data improved the X-ray position of the source, and provided new information on the timing and spectral properties of IGR J18483-0311 in quiescence. We report the detection of pulsations in the quiescent X-ray emission of this source, and give for the first time a measurement of the spin-period derivative of this source. In IGRJ18483-0311 the measured spin-period derivative of -(1.3+-0.3)x10^(-9) s/s likely results from light travel time effects in the binary. We compare the most recent observational results of IGRJ18483-0311 and SAXJ1818.6-1703, the two supergiant fast X-ray transients for which a similar orbital period has been measured.Comment: Accepted for publication in MNRA

    Hard X-ray emission of the microquasar GX 339-4 in the low/hard state

    Get PDF
    We present the analysis of the high-energy emission of the Galactic black hole binary GX 339-4 in a low/hard state at the beginning of its 2004 outburst. The data from 273 ks of INTEGRAL observations, spread over 4 weeks, are analyzed, along with the existing simultaneous RXTE HEXTE and PCA data. During this period, the flux increases by a factor of ~=3, while the spectral shape is quite unchanged, at least up to 150 keV. The high-energy data allow us to detect the presence of a high-energy cutoff, generally related to thermal mechanisms, and to estimate the plasma parameters in the framework of the Comptonization models. We found an electron temperature of 60-70 keV and an optical depth of around 2.5, with a rather low reflection factor (0.2-0.4). In the last observation, we detected a high-energy excess above 200 keV with respect to thermal Comptonization, while at lower energies the spectrum is practically identical to the previous one taken just 2 days before. This suggests that the low- and high-energy components have a different origin

    Outburst of the X-ray transient SAX J1818.6-1703 detected by INTEGRAL in September 2003

    Full text link
    During the observation of the Galactic-center field by the INTEGRAL observatory on September 9, 2003, the IBIS/ISGRI gamma-ray telescope detected a short (several-hours-long) intense (~380 mCrab at the peak) outburst of hard radiation from the X-ray transient SAX J1818.6-1703. Previously, this source was observed only once in 1998 during a similar short outburst. We present the results of our localization, spectral and timing analyses of the object and briefly discuss the possible causes of the outburst. The release time of the bulk of the energy in such an outburst is appreciably shorter than the accretion (viscous) time that characterizes the flow of matter through a standard accretion disk.Comment: 16 pages, 7 figures, to be published in Astronomy Letters, v. 31, n. 10, p. 672 (2005

    Luminosity Function of High-Mass X-ray Binaries and Anisotropy in the Distribution of Active Galactic Nuclei toward the Large Magellanic Cloud

    Full text link
    In 2003-2012, the INTEGRAL observatory has performed long-term observations of the Large Magellanic Cloud (LMC). At present, this is one of the deepest hard X-ray (20-60 keV) surveys of extragalactic fields in which more than 20 sources of different natures have been detected. We present the results of a statistical analysis of the population of high-mass X-ray binaries in the LMC and active galactic nuclei (AGNs) observed in its direction. The hard X-ray luminosity function of high-mass X-ray binaries is shown to be described by a power law with a slope alpha~1.8, that in agreement with the luminosity function measurements both in the LMC itself, but made in the soft X-ray energy band, and in other galaxies. At the same time, the number of detected AGNs toward the LMC turns out to be considerably smaller than the number of AGNs registered in other directions, in particular, toward the source 3C 273. The latter confirms the previously made assumption that the distribution of matter in the local Universe is nonuniform.Comment: 5 pages, 5 figures, will be published in Astronomy Letters, 2012, Vol. 38, No. 8, p. 492--49
    • 

    corecore