156 research outputs found

    A conjugate gradient like method for p-norm minimization in functional spaces.

    Get PDF
    We develop an iterative algorithm to recover the minimum p-norm solution of the functional linear equation Ax=b, where A:X⟶Y is a continuous linear operator between the two Banach spaces X=Lp, 11, with x∈X and b∈Y. The algorithm is conceived within the same framework of the Landweber method for functional linear equations in Banach spaces proposed by Schöpfer et al. (Inverse Probl 22:311–329, 2006). Indeed, the algorithm is based on using, at the n-th iteration, a linear combination of the steepest current “descent functional” A∗J(b−Axn) and the previous descent functional, where J denotes a duality map of the Banach space Y. In this regard, the algorithm can be viewed as a generalization of the classical conjugate gradient method on the normal equations in Hilbert spaces. We demonstrate that the proposed iterative algorithm converges strongly to the minimum p-norm solution of the functional linear equation Ax=b and that it is also a regularization method, by applying the discrepancy principle as stopping rule. According to the geometrical properties of Lp spaces, numerical experiments show that the method is fast, robust in terms of both restoration accuracy and stability, promotes sparsity and reduces the over-smoothness in reconstructing edges and abrupt intensity changes

    Relationship of Soybean Aphid (Hemiptera: Aphididae) to Soybean Plant Nutrients, Landscape Structure, and Natural Enemies

    Get PDF
    n the north central United States, populations of the exotic soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are highly variable across space, complicating effective aphid management. In this study we examined relationships of plant nutrients, landscape structure, and natural enemies with soybean aphid abundance across Iowa, Michigan, Minnesota, and Wisconsin, representing the range of conditions where soybean aphid outbreaks have occurred since its introduction. We sampled soybean aphid and its natural enemies, quantified vegetation land cover and measured soybean nutrients (potassium [K] and nitrogen [N]) in 26 soybean sites in 2005 and 2006. Multiple regression models found that aphid abundance was negatively associated with leaf K content in 2005, whereas it was negatively associated with habitat diversity (Simpson\u27s index) and positively associated with leaf N content in 2006. These variables accounted for 25 and 27% of aphid variability in 2005 and 2006, respectively, suggesting that other sources of variability are also important. In addition, K content of soybean plants decreased with increasing prevalence of corn-soybean cropland in 2005, suggesting that landscapes that have a high intensification of agriculture (as indexed by increasing corn and soybean) are more likely to have higher aphid numbers. Soybean aphid natural enemies, 26 species of predators and parasitoids, was positively related to aphid abundance; however, enemy-to-aphid abundance ratios were inversely related to aphid density, suggesting that soybean aphids are able to escape control by resident natural enemies. Overall, soybean aphid abundance was most associated with soybean leaf chemistry and landscape heterogeneity. Agronomic options that can ameliorate K deficiency and maintaining heterogeneity in the landscape may reduce aphid risk

    Taking the trophic bypass : aquatic-terrestrial linkage reduces methylmercury in a terrestrial food web

    Get PDF
    Ecosystems can be linked by the movement of matter and nutrients across habitat boundaries via aquatic insect emergence. Aquatic organisms tend to have higher concentrations of certain toxic contaminants such as methylmercury (MeHg) compared to their terrestrial counterparts. If aquatic organisms come to land, terrestrial organisms that consume them are expected to have elevated MeHg concentrations. But emergent aquatic insects could have other impacts as well, such as altering consumer trophic position or increasing ecosystem productivity as a result of nutrient inputs from insect carcasses. We measure MeHg in terrestrial arthropods at two lakes in northeastern Iceland and use carbon and nitrogen stable isotopes to quantify aquatic reliance and trophic position. Across all terrestrial focal arthropod taxa (Lycosidae, Linyphiidae, Acari, Opiliones), aquatic reliance had significant direct and indirect (via changes in trophic position) effects on terrestrial consumer MeHg. However, contrary to our expectations, terrestrial consumers that consumed aquatic prey had lower MeHg concentrations than consumers that ate mostly terrestrial prey. We hypothesize that this is due to the lower trophic position of consumers feeding directly on midges relative to those that fed mostly on terrestrial prey and that had, on average, higher trophic positions. Thus, direct consumption of aquatic inputs results in a trophic bypass that creates a shorter terrestrial food web and reduced biomagnification of MeHg across the food web. Our finding that MeHg was lower at terrestrial sites with aquatic inputs runs counter to the conventional wisdom that aquatic systems are a source of MeHg contamination to surrounding terrestrial ecosystems

    Taking the trophic bypass: aquatic-terrestrial linkage reduces methylmercury in a terrestrial food web

    Get PDF
    Abstract. Ecosystems can be linked by the movement of matter and nutrients across habitat boundaries via aquatic insect emergence. Aquatic organisms tend to have higher concentrations of certain toxic contaminants such as methylmercury (MeHg) compared to their terrestrial counterparts. If aquatic organisms come to land, terrestrial organisms that consume them are expected to have elevated MeHg concentrations. But emergent aquatic insects could have other impacts as well, such as altering consumer trophic position or increasing ecosystem productivity as a result of nutrient inputs from insect carcasses. We measure MeHg in terrestrial arthropods at two lakes in northeastern Iceland and use carbon and nitrogen stable isotopes to quantify aquatic reliance and trophic position. Across all terrestrial focal arthropod taxa (Lycosidae, Linyphiidae, Acari, Opiliones), aquatic reliance had significant direct and indirect (via changes in trophic position) effects on terrestrial consumer MeHg. However, contrary to our expectations, terrestrial consumers that consumed aquatic prey had lower MeHg concentrations than consumers that ate mostly terrestrial prey. We hypothesize that this is due to the lower trophic position of consumers feeding directly on midges relative to those that fed mostly on terrestrial prey and that had, on average, higher trophic positions. Thus, direct consumption of aquatic inputs results in a trophic bypass that creates a shorter terrestrial food web and reduced biomagnification of MeHg across the food web. Our finding that MeHg was lower at terrestrial sites with aquatic inputs runs counter to the conventional wisdom that aquatic systems are a source of MeHg contamination to surrounding terrestrial ecosystems

    Collaboration Matters: Honey Bee Health as a Transdisciplinary Model for Understanding Real-World Complexity

    Get PDF
    We develop a transdisciplinary deliberative model that moves beyond traditional scientific collaborations to include nonscientists in designing complexity-oriented research. We use the case of declining honey bee health as an exemplar of complex real-world problems requiring cross-disciplinary intervention. Honey bees are important pollinators of the fruits and vegetables we eat. In recent years, these insects have been dying at alarming rates. To prompt the reorientation of research toward the complex reality in which bees face multiple challenges, we came together as a group, including beekeepers, farmers, and scientists. Over a two-year period, we deliberated about how to study the problem of honey bee deaths and conducted field experiments with bee colonies. We show trust and authority to be crucial factors shaping such collaborative research, and we offer a model for structuring collaboration that brings scientists and nonscientists together with the key objects and places of their shared concerns across time

    Bottom-Up Forces Mediate Natural-Enemy Impact in a Phytophagous Insect Community

    Get PDF
    We employed a combination of factorial experiments in the field and laboratory to investigate the relative magnitude and degree of interaction of bottom-up factors (two levels each of host-plant nutrition and vegetation complexity) and top-down forces (two levels of wolf-spider predation) on the population growth of Prokelisia planthoppers (P. dolus and P. marginata), the dominant insect herbivores on Spartina cordgrass throughout the intertidal marshes of North America. Treatments were designed to mimic combinations of plant characteristics and predator densities that occur naturally across habitats in the field. There were complex interactive effects between plant resources and spider predation on the population growth of planthoppers. The degree that spiders suppressed planthoppers depended on both plant nutrition and vegetation complexity, an interaction that was demonstrated both in the field and laboratory. Laboratory results showed that spiders checked planthopper populations most effectively on poor-quality Spartina with an associated matrix of thatch, all characteristics of high-marsh meadow habitats. It was also this combination of plant resources in concert with spiders that promoted the smallest populations of planthoppers in our field experiment. Planthopper populations were most likely to escape the suppressing effects of predation on nutritious plants without thatch, a combination of factors associated with observed planthopper outbreaks in low-marsh habitats in the field. Thus, there is important spatial variation in the relative strength of forces with bottom-up factors dominating under low-marsh conditions and top-down forces increasing in strength at higher elevations on the marsh. Enhancing host-plant biomass and nutrition did not strengthen top-down effects on planthoppers, even though nitrogen-rich plants supported higher densities of wolf spiders and other invertebrate predators in the field. Rather, planthopper populations, particularly those of Prokelisia marginata, escaped predator restraint on high-quality plants, a result we attribute to its mobile life history, enhanced colonizing ability, and rapid growth rate. Thus, our results for Prokelisia planthoppers suggest that the life history strategy of a species is an important mediator of top-down and bottom-up impacts. In laboratory mesocosms, enhancing plant biomass and nutrition resulted in increased spider reproduction, a cascading effect associated with planthopper increases on high-quality plants. Although the adverse effects of spider predation on planthoppers cascaded down and fostered increased plant biomass in laboratory mesocosms, this result did not occur in the field where top-down effects attenuated. We attributed this outcome in part to the intraguild predation of other planthopper predators by wolf spiders. Overall, the general paradigm in this system is for bottom-up forces to dominate, and when predators do exert a significant suppressing effect on planthoppers, their impact is generally legislated by vegetation characteristics

    Grassy–herbaceous land moderates regional climate effects on honey bee colonies in the Northcentral US

    Get PDF
    The lack of seasonally sustained floral resources (i.e. pollen and nectar) is considered a primary global threat to pollinator health. However, the ability to predict the abundance of flowering resources for pollinators based upon climate, weather, and land cover is difficult due to insufficient monitoring over adequate spatial and temporal scales. Here we use spatiotemporally distributed honey bee hive scales that continuously measure hive weights as a standardized method to assess nectar intake. We analyze late summer colony weight gain as the response variable in a random forest regression model to determine the importance of climate, weather, and land cover on honey bee colony productivity. Our random forest model predicted resource acquisition by honey bee colonies with 71% accuracy, highlighting the detrimental effects of warm, wet regions in the Northcentral United States on nectar intake, as well as the detrimental effect of years with high growing degree day accumulation. Our model also predicted that grassy–herbaceous natural land had a positive effect on the summer nectar flow and that large areas of natural grassy–herbaceous land around apiaries can moderate the detrimental effects of warm, wet climates. These patterns characterize multi-scale ecological processes that constrain the quantity and quality of pollinator nutritional resources. That is, broad climate conditions constrain regional floral communities, while land use and weather act to further modify the quantity and quality of pollinator nutritional resources. Observing such broad-scale trends demonstrates the potential for utilizing hive scales to monitor the effects of climate change on landscape-level floral resources for pollinators. The interaction of climate and land use also present an opportunity to manage for climate-resilient landscapes that support pollinators through abundant floral resources under climate change

    Spatial Distribution of Aphis glycines (Hemiptera: Aphididae): A Summary of the Suction Trap Network

    Get PDF
    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an economically important pest of soybean, Glycine max (L.) Merrill, in the United States. Phenological information ofA. glycines is limited; specifically, little is known about factors guiding migrating aphids and potential impacts of long distance flights on local population dynamics. Increasing our understanding of A. glycines population dynamics may improve predictions of A. glycines outbreaks and improve management efforts. In 2005 a suction trap network was established in seven Midwest states to monitor the occurrence of alates. By 2006, this network expanded to 10 states and consisted of 42 traps. The goal of the STN was to monitor movement of A. glycines from their overwintering hostRhamnus spp. to soybean in spring, movement among soybean fields during summer, and emigration from soybean to Rhamnus in fall. The objective of this study was to infer movement patterns ofA. glycines on a regional scale based on trap captures, and determine the suitability of certain statistical methods for future analyses. Overall, alates were not commonly collected in suction traps until June. The most alates were collected during a 3-wk period in the summer (late July to mid-August), followed by the fall, with a peak capture period during the last 2 wk of September. Alate captures were positively correlated with latitude, a pattern consistent with the distribution of Rhamnus in the United States, suggesting that more southern regions are infested by immigrants from the north

    Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes

    Get PDF
    Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands—farmland suboptimal for food crops—could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks—primarily annual grain crops—on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services
    • 

    corecore