26 research outputs found

    Développement et validation de méthodologies pour le suivi des états de surface des sols agricoles nus par télédétection radar (bande X)

    Get PDF
    Le recours à la caractérisation des états hydrique, géométrique et physique de surface du sol est essentiel dans la gestion et la conservation des ressources naturelles dans les régions agricoles semi-aride. Dans ce contexte, les travaux de cette thèse visent à estimer la variabilité spatio-temporelle des paramètres de surfaces agricoles nues (humidité, rugosité et texture) moyennant des données radars multi-temporelles acquises en bande X à haute résolution spatiale. Une nouvelle description de l'état géométrique des sols est d'abord proposée à travers l'estimation d'un nouveau paramètre de rugosité, le paramètre Zg, estimé en fonction de trois paramètres statistiques de rugosité (écart type des hauteurs "s", longueur de corrélation "l" et la forme de la fonction de corrélation). Les simulations des signaux radar montrent une très forte corrélation avec ce paramètre de rugosité. L'apport du paramètre Zg est confirmé à travers une large base de données expérimentale et spatiale acquises sur différents sites en France. Le deuxième volet de cette thèse présente une analyse des sensibilités des signaux radars issus de capteurs (TerraSAR-X et COSMO-SkyMed), aux paramètres de surface (l'humidité et les trois paramètres de rugosité : s, Zs=s2/l et Zg). Une forte corrélation est observée entre les mesures radars acquises à différentes configurations (polarisations HH et VV, et à 26° et 36°d'incidences) et tous les paramètres du sol. Cette analyse est suivie par des comparaisons des coefficients de rétrodiffusion réels et simulés à partir des modèles physique et semi empirique couramment utilisés : Modèle d'équation intégrale " IEM " de Fung et al., 1992, Modèle de Dubois (Dubois et al., 1995) et le Modèle IEM empiriquement calibré par Baghdadi et al., 2011. Le dernier modèle a montré une forte cohérence avec les mesures radar. Dans le troisième volet, une méthode empirique de détection de changement est développée, en combinant les images radars TerraSAR-X avec des données d'humidités ponctuelles dérivées du réseau des 7 capteurs repartis sur la zone d'étude en continue, pour spatialiser l'état hydrique du sol. La performance de l'algorithme proposé, est évaluée et validée sur de nombreuses parcelles de référence. La spatialisation de la teneur en argile des sols est déduite à partir du calcul de la moyenne des cartes de l'état hydrique du sol (une erreur quadratique moyenne équivalent à 108 g/kg). Pour cartographier la rugosité des sols, des relations empiriques reliant le signal radar aux paramètres de rugosité (Ecart type des hauteurs et le paramètre Zg) étaient élaborées. En inversant les mesures radars, les cartes de rugosité qui en résultent, ont permis de distinguer différents états de surface des sols (labourés, dégradés ou en jachère). Dans le dernier volet, un modèle d'estimation du bilan hydrique des sols agricoles nus " MHYSAN " qui simule l'évaporation et l'état hydrique surfacique est développé. Cette dernière partie souligne le potentiel de calibrer un modèle hydrologique des sols en assimilant les produits d'humidité radars.The characterization of geometric, water and physical surface soil parameters for semi-arid regions is a key requirement for sustainable agricultural management and natural resources conservation. In this context, the current study aims to estimate the spatio-temporal variability of soil properties (soil moisture, roughness and texture) using multi-temporal X-band radar images acquired at high spatial resolution over bare agricultural site in Tunisia. In the first section of this work, a new roughness parameter was proposed; it was the Zg parameter which combines the three most commonly used soil parameters: root mean surface height "s", correlation length "l", and correlation function shape, into just one parameter. A strong correlation was observed between this new parameter and the radar backscattering simulations. The parameter Zg was validated using large database acquired at several agricultural sites in France. Secondly, the sensitivity of X-band TerraSAR-X and COSMO-SkyMed sensors to soil moisture and different roughness parameters (s, Zs=s2/l and Zg parameters) was analyzed. The radar measurements acquired at different configurations (HH and VV polarizations, incidence angles of 26° and 36°) were found to be highly sensitive to the various soil parameters of interest. After that, the performance of different physical and semi-empirical backscattering models (IEM, Baghdadi-calibrated IEM and Dubois models) is compared with SAR measurements. Considerable improvements in the IEM model performance were observed using the Baghdadi-calibrated version of this model. Thirdly, an empirical change detection approach was developed using TerraSAR-X data and ground auxiliary thetaprobe network measurements for the retrieval of surface soil moisture at a high spatial resolution. The accuracy of the soil moisture retrieval algorithm was determined, and validated successfully over numerous test fields. Maps of soil clay percentages at the studied site were derived from the mean of the seven soil moisture radar outputs (a root mean square error equal to 108 g/kg). To retrieve surface soil roughness, empirical expressions were established between backscattering TerraSAR-X coefficients data and the roughness parameters (s and Zg). By inversing radar signals, resulting surface roughness maps have revealed that is possible to use spatial roughness variability observations at plot scale to identify soil surface changes between multi-temporal images. Finally, a Bare Soil HYdrological balance Model "MHYSAN" was developed to estimate surface evaporation fluxes and soil moisture time series over our study site. The present section of this work highlighted the feasibility of calibrating our proposed MHYSAN model through the use of multi-temporal TerraSAR-X moisture products

    A newsoil roughness parameter for themodelling of radar backscattering over bare soil

    Get PDF
    International audienceThe characterisation of soil surface roughness is a key requirement for the correct analysis of radar backscattering behaviour. It is noteworthy that an increase in the number of surface roughness parameters in a model also increases the difficulty with which data can be inverted for the purposes of estimating soil parameters. In this paper, a new description of soil surface roughness is proposed for microwave applications. This is based on an original roughness parameter, Zg, which combines the three most commonly used soil parameters: root mean surface height, correlation length, and correlation function shape, into just one parameter. Numerical modelling, based on the moment method and integral equations, is used to evaluate the relevance of this approach. It is applied over a broad dataset of numerically generated surfaces characterised by a large range of surface roughness parameters. A strong correlation is observed between this new parameter and the radar backscattering simulations, for the HH and VV polarisations in the C and X bands. It is proposed to validate this approach using data acquired in the C and X bands, at several agricultural sites in France. It was found that the parameter Zg has a high potential for the analysis of surface roughness using radar measurements. An empirical model is proposed for the simulation of backscattered radar signals over bare soil

    Bare soil moisture retrieval from multi-temporal X-band TerraSAR-X SAR images

    Get PDF
    IGARSS 2015, Milan, ITA, 26-/07/2015 - 31/07/2015International audienceThe aim of the present study is to analyze the sensitivity of X-band SAR (TerraSAR-X) signals as a function of different physical bare soil parameters (soil moisture, soil roughness), and to evaluate the accuracy of change detection approach proposed for soil moisture estimation. Firstly, we presented a brief description of our ground and satellite database. Secondly, we considered the main results of our statistical analysis of the relationships between radar and soil parameters: soil moisture and different roughness parameters (the rms height, Zs parameter, and a new roughness parameter Zg. Finally, we proposed an algorithm combing multi-temporal X-band SAR images (TerraSAR-X) with different continuous thetaprobe measurements for the retrieval of surface soil moisture at a high spatial resolution

    Influence of Radar Frequency on the Relationship Between Bare Surface Soil Moisture Vertical Profile and Radar Backscatter

    Get PDF
    International audienceThe aim of this letter is to discuss the influence of radar frequency on the relationship between surface soil moisture and the nature of radar backscatter over bare soils. In an attempt to address this issue, the advanced integral equation model was used to simulate backscatter from soil surfaces with various moisture vertical profiles, for three frequency bands, namely, L, C, and X. In these computations, we investigated the influence of the vertical heterogeneity of soil moisture on the characteristics of the backscattered signals. The influence of radar frequency is clearly demonstrated. A database produced from Envisat ASAR and TerraSAR-X data, which was acquired over bare soils with in situ measurements of moisture content and ground surface roughness, was used to validate the utility of taking the soil moisture heterogeneity into account in the backscatter model

    Development and validation of methodologies for agricultural bare soil surface monitoring using radar data (x-band)

    No full text
    Le recours à la caractérisation des états hydrique, géométrique et physique de surface du sol est essentiel dans la gestion et la conservation des ressources naturelles dans les régions agricoles semi-aride. Dans ce contexte, les travaux de cette thèse visent à estimer la variabilité spatio-temporelle des paramètres de surfaces agricoles nues (humidité, rugosité et texture) moyennant des données radars multi-temporelles acquises en bande X à haute résolution spatiale. Une nouvelle description de l'état géométrique des sols est d'abord proposée à travers l'estimation d'un nouveau paramètre de rugosité, le paramètre Zg, estimé en fonction de trois paramètres statistiques de rugosité (écart type des hauteurs "s", longueur de corrélation "l" et la forme de la fonction de corrélation). Les simulations des signaux radar montrent une très forte corrélation avec ce paramètre de rugosité. L'apport du paramètre Zg est confirmé à travers une large base de données expérimentale et spatiale acquises sur différents sites en France. Le deuxième volet de cette thèse présente une analyse des sensibilités des signaux radars issus de capteurs (TerraSAR-X et COSMO-SkyMed), aux paramètres de surface (l'humidité et les trois paramètres de rugosité : s, Zs=s2/l et Zg). Une forte corrélation est observée entre les mesures radars acquises à différentes configurations (polarisations HH et VV, et à 26° et 36°d'incidences) et tous les paramètres du sol. Cette analyse est suivie par des comparaisons des coefficients de rétrodiffusion réels et simulés à partir des modèles physique et semi empirique couramment utilisés : Modèle d'équation intégrale " IEM " de Fung et al., 1992, Modèle de Dubois (Dubois et al., 1995) et le Modèle IEM empiriquement calibré par Baghdadi et al., 2011. Le dernier modèle a montré une forte cohérence avec les mesures radar. Dans le troisième volet, une méthode empirique de détection de changement est développée, en combinant les images radars TerraSAR-X avec des données d'humidités ponctuelles dérivées du réseau des 7 capteurs repartis sur la zone d'étude en continue, pour spatialiser l'état hydrique du sol. La performance de l'algorithme proposé, est évaluée et validée sur de nombreuses parcelles de référence. La spatialisation de la teneur en argile des sols est déduite à partir du calcul de la moyenne des cartes de l'état hydrique du sol (une erreur quadratique moyenne équivalent à 108 g/kg). Pour cartographier la rugosité des sols, des relations empiriques reliant le signal radar aux paramètres de rugosité (Ecart type des hauteurs et le paramètre Zg) étaient élaborées. En inversant les mesures radars, les cartes de rugosité qui en résultent, ont permis de distinguer différents états de surface des sols (labourés, dégradés ou en jachère). Dans le dernier volet, un modèle d'estimation du bilan hydrique des sols agricoles nus " MHYSAN " qui simule l'évaporation et l'état hydrique surfacique est développé. Cette dernière partie souligne le potentiel de calibrer un modèle hydrologique des sols en assimilant les produits d'humidité radars.The characterization of geometric, water and physical surface soil parameters for semi-arid regions is a key requirement for sustainable agricultural management and natural resources conservation. In this context, the current study aims to estimate the spatio-temporal variability of soil properties (soil moisture, roughness and texture) using multi-temporal X-band radar images acquired at high spatial resolution over bare agricultural site in Tunisia. In the first section of this work, a new roughness parameter was proposed; it was the Zg parameter which combines the three most commonly used soil parameters: root mean surface height "s", correlation length "l", and correlation function shape, into just one parameter. A strong correlation was observed between this new parameter and the radar backscattering simulations. The parameter Zg was validated using large database acquired at several agricultural sites in France. Secondly, the sensitivity of X-band TerraSAR-X and COSMO-SkyMed sensors to soil moisture and different roughness parameters (s, Zs=s2/l and Zg parameters) was analyzed. The radar measurements acquired at different configurations (HH and VV polarizations, incidence angles of 26° and 36°) were found to be highly sensitive to the various soil parameters of interest. After that, the performance of different physical and semi-empirical backscattering models (IEM, Baghdadi-calibrated IEM and Dubois models) is compared with SAR measurements. Considerable improvements in the IEM model performance were observed using the Baghdadi-calibrated version of this model. Thirdly, an empirical change detection approach was developed using TerraSAR-X data and ground auxiliary thetaprobe network measurements for the retrieval of surface soil moisture at a high spatial resolution. The accuracy of the soil moisture retrieval algorithm was determined, and validated successfully over numerous test fields. Maps of soil clay percentages at the studied site were derived from the mean of the seven soil moisture radar outputs (a root mean square error equal to 108 g/kg). To retrieve surface soil roughness, empirical expressions were established between backscattering TerraSAR-X coefficients data and the roughness parameters (s and Zg). By inversing radar signals, resulting surface roughness maps have revealed that is possible to use spatial roughness variability observations at plot scale to identify soil surface changes between multi-temporal images. Finally, a Bare Soil HYdrological balance Model "MHYSAN" was developed to estimate surface evaporation fluxes and soil moisture time series over our study site. The present section of this work highlighted the feasibility of calibrating our proposed MHYSAN model through the use of multi-temporal TerraSAR-X moisture products

    Retrieval of Both Soil Moisture and Texture Using TerraSAR-X Images

    No full text
    The aim of this paper is to propose a methodology combing multi-temporal X-band SAR images (TerraSAR-X) with continuous ground thetaprobe measurements, for the retrieval of surface soil moisture and texture at a high spatial resolution. Our analysis is based on seven radar images acquired at a 36° incidence angle in the HH polarization, over a semi-arid site in Tunisia (North Africa). The soil moisture estimations are based on an empirical change detection approach using TerraSAR-X data and ground auxiliary thetaprobe network measurements. Two assumptions were tested: (1) roughness variations during the three-month radar acquisition campaigns were not accounted for; (2) a simple correction for temporal variations in roughness was included. The results reveal a small improvement in the estimation of soil moisture when a correction for temporal variations in roughness is introduced. By considering the estimated temporal dynamics of soil moisture, a methodology is proposed for the retrieval of clay and sand content (expressed as percentages) in soil. Two empirical relationships were established between the mean moisture values retrieved from the seven acquired radar images and the two soil texture components over 36 test fields. Validation of the proposed approach was carried out over a second set of 34 fields, showing that highly accurate clay estimations can be achieved. Maps of soil moisture, clay and sand percentages at the studied site are derived

    Use of Sentinel-1 Multi-Configuration and Multi-Temporal Series for Monitoring Parameters of Winter Wheat

    No full text
    The present study aims to investigate the potential of multi-configuration Sentinel-1 (S-1) synthetic aperture radar (SAR) images for characterizing four wheat parameters: total fresh mass (TFM), total dry mass (TDM), plant heights (He), and water content (WC). Because they are almost independent on the weather conditions, we have chosen to use only SAR. Samples of wheat parameters were collected over seven fields (three irrigated and four rainfed fields) in Southwestern France. We first analyzed the temporal behaviors of wheat parameters (He, TDM, TFM and WC) between February and June 2016. Then, the temporal profiles of the S-1 backscattering coefficients (VV, VH), the difference (VH − VV), the sum of the polarizations (VH + VV) and their cumulative values are analyzed for two orbits (30 and 132) during the wheat-growing season (from January to July 2016). After that, S-1 signals were statistically compared with all crop parameters considering the impact of pass orbit, irrigation and two vegetative periods in order to identify the best S-1 configuration for estimating crop parameters. Interesting S-1 backscattering behaviors were observed with the various wheat parameters after separating irrigation impacts and vegetative periods. For the orbit 30 (mean incidence angle of 33.6°); results show that the best S-1 configurations (with coefficient of determination (R2) > 0.7) were obtained using the VV and VH + VV as a function of the He, TDM and WC, over irrigated fields and during the second vegetative period. For the orbit 132 (mean incidence angle of 43.4°), the highest dynamic sensitivities (R2 > 0.8) were observed for the VV and VH + VV configurations with He, TDM and TFM over irrigated fields during the first vegetative period. Overall, the sensitivity of S-1 data to wheat variables depended on the radar configuration (orbits and polarizations), the vegetative periods and was often better over irrigated fields in comparison with rainfed ones. Significant improvements of the determination coefficients were obtained when the cumulative (VH + VV) index was considered for He (R² > 0.9), TDM (R² > 0.9) and TFM (R² > 0.75) for irrigated fields, all along the crop cycle. The estimate of WC was more limited (R² > 0.6) and remained limited to the second period of the vegetation cycle (from flowering onwards). Whatever parameters were considered, the relative errors never exceeded 23%. This study has shown the importance of considering the agricultural practices (irrigation) and vegetative periods to effectively monitor some wheat parameters with S-1 data

    Mapping of bare soil surface parameters (moisture, roughness, texture) from one TerraSAR-X radar configuration

    No full text
    International audienceIn this paper, surface bare soil parameters (moisture, roughness and texture) mapping was carried out in central Tunisia (North Africa) using one TerraSAR-X radar configuration (one incidence angle, one polarization). Firstly, we analyzed statistically the relationships between TerraSAR-X backscattering signals function of soil moisture and different roughness parameters (the root mean square height Hrms, the Zs and the Zg parameters) at 36° and HH polarization. Results have shown a high sensitivity of real radar data to all soil parameters. Then, we proposed an algorithm combing the TerraSAR-X images with different continuous thetaprobe measurements for the retrieval of surface soil moisture. Empirical relationship was established between the mean moisture values retrieved from the SAR images and the percentage of clay over 36 test fields. Validation of the proposed approach was carried out over a second set of 34 fields, showing that highly accurate clay estimations can be achieved. Finally, for spatial and temporal surface roughness estimation, we proposed empirical relationships between radar and soil roughness parameters (Hrms and Zg parameters). The proposed model was calibrated over 39 test fields, and then validated over 40 other plots

    Mapping of bare soil surface parameters from TerraSAR-X radar images over a semi-arid region

    No full text
    International audienceThe goal of this paper is to analyze the sensitivity of X-band SAR (TerraSAR-X) signals as a function of different physical bare soil parameters (soil moisture, soil roughness), and to demonstrate that it is possible to estimate of both soil moisture and texture from the same experimental campaign, using a single radar signal configuration (one incidence angle, one polarization). Firstly, we analyzed statistically the relationships between X-band SAR (TerraSAR-X) backscattering signals function of soil moisture and different roughness parameters (the root mean square height Hrms, the Zs parameter and the Zg parameter) at HH polarization and for an incidence angle about 36°, over a semi-arid site in Tunisia (North Africa). Results have shown a high sensitivity of real radar data to the two soil parameters: roughness and moisture. A linear relationship is obtained between volumetric soil moisture and radar signal. A logarithmic correlation is observed between backscattering coefficient and all roughness parameters. The highest dynamic sensitivity is obtained with Zg parameter. Then, we proposed to retrieve of both soil moisture and texture using these multi-temporal X-band SAR images. Our approach is based on the change detection method and combines the seven radar images with different continuous thetaprobe measurements. To estimate soil moisture from X-band SAR data, we analyzed statistically the sensitivity between radar measurements and ground soil moisture derived from permanent thetaprobe stations. Our approaches are applied over bare soil class identified from an optical image SPOT / HRV acquired in the same period of measurements. Results have shown linear relationship for the radar signals as a function of volumetric soil moisture with high sensitivity about 0.21 dB/vol%. For estimation of change in soil moisture, we considered two options: (1) roughness variations during the three-month radar acquisition campaigns were not accounted for; (2) a simple correction for temporal variations in roughness was included. The results reveal a small improvement in the estimation of soil moisture when a correction for temporal variations in roughness is introduced. Finally, by considering the estimated temporal dynamics of soil moisture, a methodology is proposed for the retrieval of clay and sand content (expressed as percentages) in soil. Two empirical relationships were established between the mean moisture values retrieved from the seven acquired radar images and the two soil texture components over 36 test fields. Validation of the proposed approach was carried out over a second set of 34 fields, showing that highly accurate clay estimations can be achieved

    Mapping of surface soil parameters (roughness, moisture and texture) using one radar X-band SAR configuration over bare agricultural semi-arid region

    No full text
    International audienceThe aim of this paper is to estimate geometric, water and physical surface soil parameters from typical semi-arid regions made over bare study area (North Africa) using multi-temporal X-band SAR images (TerraSAR-X)
    corecore