9 research outputs found
Purification and characterization of a protein-tyrosine kinase encoded by the Abelson murine leukemia virus
Sequences termed v-abl, which encode the protein-tyrosine kinase activity of Abelson murine leukemia virus, have been expressed in Escherichia coli as a fusion product (ptabl50 kinase). This fusion protein contains 80 amino acids of SV40 small t and the 403 amino acid protein kinase domain of v-abl. We report here the purification and characterization of this kinase. The purified material contains two proteins (Mr = 59,800 and 57,200), both of which possess sequences derived from v-abl. Overall purification was 3,750-fold, with a 31% yield, such that 117 micrograms of kinase could be obtained from 40 g of E. coli within 6-7 days. The specific kinase activity is over 170 mumol of phosphate min-1 mumol-1, comparable to the most active protein- serine kinases. Kinase activity is insensitive to K+, Na+, Ca2+, Ca2+- calmodulin, cAMP, or cAMP-dependent protein kinase inhibitor. The Km for ATP is dependent on the concentration of the second substrate. GTP can also be used as a phosphate donor. The enzyme can phosphorylate peptides consisting of as few as two amino acids and, at a very low rate, free tyrosine. Incubation of the kinase with [gamma-32P]ATP results in incorporation of 1.0 mol of phosphate/mol of protein. This reaction, however, cannot be blocked by prior incubation with unlabeled ATP. Incubation of 32P-labeled kinase with either ADP or ATP results in the synthesis of [32P]ATP. This suggests the phosphotyrosine residue on the Abelson kinase contains a high energy phosphate bond
B cell–adaptive immune profile in emphysema-predominant chronic obstructive pulmonary disease
Cigarette smoke, the major risk factor for COPD in developed countries, causes pulmonary inflammation that persists long after smoking cessation, suggesting self-perpetuating adaptive immune responses similar to those that occur in autoimmune diseases. Increases in the number and size of B cell–rich lymphoid follicles (LFs) have been shown in patients in severe stages of COPD (4), and increased B-cell products (autoantibodies) have been observed in the blood and lungs of patients with COPD (5, 6). Oligoclonal rearrangement of the immunoglobulin genes has been observed in B cells isolated from COPD LFs, suggesting that a specific antigenic stimulation drives B-cell proliferation. Consistently, we have shown that in the COPD lung, there is an overexpression of BAFF (B-cell activation factor of the TNF family), which is a key regulator of B-cell homeostasis in several autoimmune diseases (7) and is involved in the growth of LFs in COPD. However, a network analysis of lung transcriptomics showed that a prominent B-cell molecular signature characterized emphysema preferentially but was absent in AD independently of the degree of airflow limitation (8). In the current study, we investigated the correlation between B-cell responses in lung tissue from patients with COPD and healthy smokers, and the extent of emphysema versus airflow limitation
RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination
The vast repertoire of immunoglobulins and T cell receptors is generated, in part, by V(D)J recombination, a series of genomic rearrangements that occur specifically in developing lymphocytes. The recombination activating gene, RAG-1, which is a gene expressed exclusively in maturing lymphoid cells, was previously isolated. RAG-1 inefficiently induced V(D)J recombinase activity when transfected into fibroblasts, but cotransfection with an adjacent gene, RAG-2, has resulted in at least a 1000-fold increase in the frequency of recombination. The 2.1-kilobase RAG-2 complementary DNA encodes a putative protein of 527 amino acids whose sequence is unrelated to that of RAG-1. Like RAG-1, RAG-2 is conserved between species that carry out V(D)J recombination, and its expression pattern correlates precisely with that of V(D)J recombinase activity. In addition to being located just 8 kilobases apart, these convergently transcribed genes are unusual in that most, if not all, of their coding and 3' untranslated sequences are contained in single exons. RAG-1 and RAG-2 might activate the expression of the V(D)J recombinase but, more likely, they directly participate in the recombination reaction
RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination
The vast repertoire of immunoglobulins and T cell receptors is generated, in part, by V(D)J recombination, a series of genomic rearrangements that occur specifically in developing lymphocytes. The recombination activating gene, RAG-1, which is a gene expressed exclusively in maturing lymphoid cells, was previously isolated. RAG-1 inefficiently induced V(D)J recombinase activity when transfected into fibroblasts, but cotransfection with an adjacent gene, RAG-2, has resulted in at least a 1000-fold increase in the frequency of recombination. The 2.1-kilobase RAG-2 complementary DNA encodes a putative protein of 527 amino acids whose sequence is unrelated to that of RAG-1. Like RAG-1, RAG-2 is conserved between species that carry out V(D)J recombination, and its expression pattern correlates precisely with that of V(D)J recombinase activity. In addition to being located just 8 kilobases apart, these convergently transcribed genes are unusual in that most, if not all, of their coding and 3' untranslated sequences are contained in single exons. RAG-1 and RAG-2 might activate the expression of the V(D)J recombinase but, more likely, they directly participate in the recombination reaction
B Cell-Adaptive immune profile in emphysema-predominant chronic obstructive pulmonary disease
Cigarette smoke, the major risk factor for COPD in developed countries, causes pulmonary inflammation that persists long after smoking cessation, suggesting self-perpetuating adaptive immune responses similar to those that occur in autoimmune diseases. Increases in the number and size of B cell–rich lymphoid follicles (LFs) have been shown in patients in severe stages of COPD (4), and increased B-cell products (autoantibodies) have been observed in the blood and lungs of patients with COPD (5, 6). Oligoclonal rearrangement of the immunoglobulin genes has been observed in B cells isolated from COPD LFs, suggesting that a specific antigenic stimulation drives B-cell proliferation. Consistently, we have shown that in the COPD lung, there is an overexpression of BAFF (B-cell activation factor of the TNF family), which is a key regulator of B-cell homeostasis in several autoimmune diseases (7) and is involved in the growth of LFs in COPD. However, a network analysis of lung transcriptomics showed that a prominent B-cell molecular signature characterized emphysema preferentially but was absent in AD independently of the degree of airflow limitation (8). In the current study, we investigated the correlation between B-cell responses in lung tissue from patients with COPD and healthy smokers, and the extent of emphysema versus airflow limitation
Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients: A Randomized Clinical Trial
There is clinical equipoise for COVID-19 convalescent plasma (CCP) use in patients hospitalized with COVID-19.
To determine the safety and efficacy of CCP compared with placebo in hospitalized patients with COVID-19 receiving noninvasive supplemental oxygen.
CONTAIN COVID-19, a randomized, double-blind, placebo-controlled trial of CCP in hospitalized adults with COVID-19, was conducted at 21 US hospitals from April 17, 2020, to March 15, 2021. The trial enrolled 941 participants who were hospitalized for 3 or less days or presented 7 or less days after symptom onset and required noninvasive oxygen supplementation.
A unit of approximately 250 mL of CCP or equivalent volume of placebo (normal saline).
The primary outcome was participant scores on the 11-point World Health Organization (WHO) Ordinal Scale for Clinical Improvement on day 14 after randomization; the secondary outcome was WHO scores determined on day 28. Subgroups were analyzed with respect to age, baseline WHO score, concomitant medications, symptom duration, CCP SARS-CoV-2 titer, baseline SARS-CoV-2 serostatus, and enrollment quarter. Outcomes were analyzed using a bayesian proportional cumulative odds model. Efficacy of CCP was defined as a cumulative adjusted odds ratio (cOR) less than 1 and a clinically meaningful effect as cOR less than 0.8.
Of 941 participants randomized (473 to placebo and 468 to CCP), 556 were men (59.1%); median age was 63 years (IQR, 52-73); 373 (39.6%) were Hispanic and 132 (14.0%) were non-Hispanic Black. The cOR for the primary outcome adjusted for site, baseline risk, WHO score, age, sex, and symptom duration was 0.94 (95% credible interval [CrI], 0.75-1.18) with posterior probability (P[cOR<1] = 72%); the cOR for the secondary adjusted outcome was 0.92 (95% CrI, 0.74-1.16; P[cOR<1] = 76%). Exploratory subgroup analyses suggested heterogeneity of treatment effect: at day 28, cORs were 0.72 (95% CrI, 0.46-1.13; P[cOR<1] = 93%) for participants enrolled in April-June 2020 and 0.65 (95% CrI, 0.41 to 1.02; P[cOR<1] = 97%) for those not receiving remdesivir and not receiving corticosteroids at randomization. Median CCP SARS-CoV-2 neutralizing titer used in April to June 2020 was 1:175 (IQR, 76-379). Any adverse events (excluding transfusion reactions) were reported for 39 (8.2%) placebo recipients and 44 (9.4%) CCP recipients (P = .57). Transfusion reactions occurred in 2 (0.4) placebo recipients and 8 (1.7) CCP recipients (P = .06).
In this trial, CCP did not meet the prespecified primary and secondary outcomes for CCP efficacy. However, high-titer CCP may have benefited participants early in the pandemic when remdesivir and corticosteroids were not in use.
ClinicalTrials.gov Identifier: NCT04364737