2,290 research outputs found

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ÏˆÎł, with the photons being measured through conversions to eâșe⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → ÎŒâșΌ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    MUSiC: a model-unspecific search for new physics in proton–proton collisions at √s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton–proton collision data recorded at the LHC at a centre-of-mass energy of 13TeV, corresponding to an integrated luminosity of 35.9fb-1, are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches

    Calibration of the CMS hadron calorimeters using proton-proton collision data at √s = 13 TeV

    Get PDF
    Methods are presented for calibrating the hadron calorimeter system of the CMS detector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities |η| < 3 and are positioned inside the solenoidal magnet. An outer calorimeter, outside the magnet coil, covers |η| < 1.26, and a steel and quartz-fiber Cherenkov forward calorimeter extends the coverage to |η| < 5.19. The initial calibration of the calorimeters was based on results from test beams, augmented with the use of radioactive sources and lasers. The calibration was improved substantially using proton-proton collision data collected at √s = 7, 8, and 13 TeV, as well as cosmic ray muon data collected during the periods when the LHC beams were not present. The present calibration is performed using the 13 TeV data collected during 2016 corresponding to an integrated luminosity of 35.9 fb⁻Âč. The intercalibration of channels exploits the approximate uniformity of energy collection over the azimuthal angle. The absolute energy scale of the central and endcap calorimeters is set using isolated charged hadrons. The energy scale for the electromagnetic portion of the forward calorimeters is set using Z→ ee data. The energy scale of the outer calorimeters has been determined with test beam data and is confirmed through data with high transverse momentum jets. In this paper, we present the details of the calibration methods and accuracy

    Combined searches for the production of supersymmetric top quark partners in proton–proton collisions at √s=13Te

    Get PDF
    A combination of searches for top squark pair production using proton–proton collision data at a center-of-mass energy of 13TeV at the CERN LHC, corresponding to an integrated luminosity of 137fb−1^{-1} collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on the model, the combined result excludes a top squark mass up to 1325GeV for a massless neutralino, and a neutralino mass up to 700GeV for a top squark mass of 1150GeV. Top squarks with masses from 145 to 295GeV, for neutralino masses from 0 to 100GeV, with a mass difference between the top squark and the neutralino in a window of 30GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420GeV

    First Search for Exclusive Diphoton Production at High Mass with Tagged Protons in Proton-Proton Collisions at √s = 13 TeV

    Get PDF
    • 

    corecore