9 research outputs found
miR-19a-3p containing exosomes improve function of ischemic myocardium upon shock wave therapy
AIMS: As many current approaches for heart regeneration exert unfavorable side-effects, the induction of endogenous repair mechanisms in ischemic heart disease is of particular interest. Recently, exosomes carrying angiogenic miRNAs have been described to improve heart function. However, it remains challenging to stimulate specific release of reparative exosomes in ischemic myocardium. In the present study, we sought to test the hypothesis that the physical stimulus of shock wave therapy (SWT) causes the release of exosomes. We aimed to substantiate the pro-angiogenic impact of the released factors, to identify the nature of their cargo, and to test their efficacy in vivo supporting regeneration and recovery after myocardial ischemia. METHODS AND RESULTS: Mechanical stimulation of ischemic muscle via SWT caused extracellular vesicle (EV) release from endothelial cells both in vitro and in vivo. Characterization of EVs via electron microscopy, nanoparticle tracking analysis and flow cytometry revealed specific exosome morphology and size with presence of exosome markers CD 9, CD81 and CD63. Exosomes exhibited angiogenic properties activating protein kinase b (Akt) and extracellular-signal regulated kinase (ERK) resulting in enhanced endothelial tube formation and proliferation. A miRNA array and transcriptome analysis via next-generation sequencing were performed to specify exosome content. miR-19a-3p was identified as responsible cargo, antimir-19a-3p antagonized angiogenic exosome effects. Exosomes and target miRNA were injected intramyocardially in mice after left anterior descending artery (LAD) ligation. Exosomes resulted in improved vascularization, decreased myocardial fibrosis and increased left ventricular ejection fraction as shown by transthoracic echocardiography. CONCLUSIONS: The mechanical stimulus of SWT causes release of angiogenic exosomes. miR-19a-3p is the vesicular cargo responsible for the observed effects. Released exosomes induce angiogenesis, decrease myocardial fibrosis and improve left ventricular function after myocardial ischemia. Exosome release via SWT could develop an innovative approach for the regeneration of ischemic myocardium
Impact of beta-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells.
In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) via complex intracellular mechanisms that are still incompletely understood. Little is known about the effects of phosphate on the bioenergetic profile of VSMCs during the onset of this process. Therefore, the present study explored the effects of the phosphate donor beta-glycerophosphate on cellular bioenergetics of VSMCs. Mitochondrial and glycolytic functions were determined utilizing extracellular flux analysis in primary human aortic VSMCs following exposure to beta-glycerophosphate. In VSMCs, beta-glycerophosphate increased basal respiration, mitochondrial ATP production as well as proton leak and decreased spare respiratory capacity and coupling efficiency, but did not modify non-mitochondrial or maximal respiration. beta-Glycerophosphate-treated VSMCs had higher ability to increase mitochondrial glutamine and long-chain fatty acid usage as oxidation substrates to meet their energy demand. beta-Glycerophosphate did not modify glycolytic function or basal and glycolytic proton efflux rate. In contrast, beta-glycerophosphate increased non-glycolytic acidification. beta-Glycerophosphate-treated VSMCs had a more oxidative and less glycolytic phenotype, but a reduced ability to respond to stressed conditions via mitochondrial respiration. Moreover, compounds targeting components of mitochondrial respiration modulated beta-glycerophosphate-induced oxidative stress, osteo-/chondrogenic signalling and mineralization of VSMCs. In conclusion, beta-glycerophosphate modifies key parameters of mitochondrial function and cellular bioenergetics in VSMCs that may contribute to the onset of phenotypical transdifferentiation and calcification. These observations advance the understanding of the role of energy metabolism in VSMC physiology and pathophysiology of vascular calcification during hyperphosphatemia
Challenges and satisfaction in cardiothoracic surgery residency programmes: Insights from a Europe-wide survey
OBJECTIVES: The increasing complexity of surgical patients and working time constraints represent challenges for training. In this study, the European Association for Cardio-Thoracic Surgery Residents' Committee aimed to evaluate satisfaction with current training programmes across Europe. METHODS: We conducted an online survey between October 2018 and April 2019, completed by a total of 219 participants from 24 countries. RESULTS: The average respondent was in the fourth or fifth year of training, mostly on a cardiac surgery pathway. Most trainees follow a 5-6-year programme, with a compulsory final certification exam, but no regular skills evaluation. Only a minority are expected to take the examination by the European Board of Cardiothoracic Surgery. Participants work on average 61.0 ± 13.1 h per week, including 27.1 ± 20.2 on-call. In total, only 19.7% confirmed the implementation of the European Working Time Directive, with 42.0% being unaware that European regulations existed. Having designated time for research was reported by 13.0%, despite 47.0% having a postgraduate degree. On average, respondents rated their satisfaction 7.9 out of 10, although 56.2% of participants were not satisfied with their training opportunities. We found an association between trainee satisfaction and regular skills evaluation, first operator experience and protected research time. CONCLUSIONS: On average, residents are satisfied with their training, despite significant disparities in the quality and structure of cardiothoracic surgery training across Europe. Areas for potential improvement include increasing structured feedback, research time integration and better working hours compliance. The development of European guidelines on training standards may support this
Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart
Ischaemic heart disease (IHD) is a complex disorder and a leading cause of death and morbidity in both men and women. Sex, however, affects several aspects of IHD, including pathophysiology, incidence, clinical presentation, diagnosis as well as treatment and outcome. Several diseases or risk factors frequently associated with IHD can modify cellular signalling cascades, thus affecting ischaemia/reperfusion injury as well as responses to cardioprotective interventions. Importantly, the prevalence and impact of risk factors and several comorbidities differ between males and females, and their effects on IHD development and prognosis might differ according to sex. The cellular and molecular mechanisms underlying these differences are still poorly understood, and their identification might have important translational implications in the prediction or prevention of risk of IHD in men and women. Despite this, most experimental studies on IHD are still undertaken in animal models in the absence of risk factors and comorbidities, and assessment of potential sex-specific differences are largely missing. This ESC WG Position Paper will discuss: (i) the importance of sex as a biological variable in cardiovascular research, (ii) major biological mechanisms underlying sex-related differences relevant to IHD risk factors and comorbidities, (iii) prospects and pitfalls of preclinical models to investigate these associations, and finally (iv) will provide recommendations to guide future research. Although gender differences also affect IHD risk in the clinical setting, they will not be discussed in detail here
Cardiac troponin release following coronary artery bypass grafting: mechanisms and clinical implications
The use of biomarkers is undisputed in the diagnosis of primary myocardial infarction (MI), but their value for identifying MI is less well studied in the postoperative phase following coronary artery bypass grafting (CABG). To identify patients with periprocedural MI (PMI), several conflicting definitions of PMI have been proposed, relying either on cardiac troponin (cTn) or the MB isoenzyme of creatine kinase, with or without supporting evidence of ischaemia. However, CABG inherently induces the release of cardiac biomarkers, as reflected by significant cTn concentrations in patients with uncomplicated postoperative courses. Still, the underlying (patho)physiological release mechanisms of cTn are incompletely understood, complicating adequate interpretation of postoperative increases in cTn concentrations. Therefore, the aim of the current review is to present these potential underlying mechanisms of cTn release in general, and following CABG in particular (Graphical Abstract). Based on these mechanisms, dissimilarities in the release of cTnI and cTnT are discussed, with potentially important implications for clinical practice. Consequently, currently proposed cTn biomarker cut-offs by the prevailing definitions of PMI might warrant re-assessment, with differentiation in cut-offs for the separate available assays and surgical strategies. To resolve these issues, future prospective studies are warranted to determine the prognostic influence of biomarker release in general and PMI in particular
Circadian rhythms in ischaemic heart disease. Key aspects for preclinical and translational research: Position paper of the ESC Working Group on Cellular Biology of the Heart
: Circadian rhythms are internal regulatory processes controlled by molecular clocks present in essentially every mammalian organ that temporally regulate major physiological functions. In the cardiovascular system, the circadian clock governs heart rate, blood pressure, cardiac metabolism, contractility and coagulation. Recent experimental and clinical studies highlight the possible importance of circadian rhythms in the pathophysiology, outcome, or treatment success of cardiovascular disease, including ischaemic heart disease. Disturbances in circadian rhythms are associated with increased cardiovascular risk and worsen outcome. Therefore, it is important to consider circadian rhythms as a key research parameter to better understand cardiac physiology/pathology, and to improve the chances of translation and efficacy of cardiac therapies, including those for ischaemic heart disease. The aim of this Position Paper by the European Society of Cardiology Working Group Cellular Biology of the Heart is to highlight key aspects of circadian rhythms to consider for improvement of preclinical and translational studies related to ischaemic heart disease and cardioprotection. Applying these considerations to future studies may increase the potential for better translation of new treatments into successful clinical outcomes
Circadian rhythms in ischaemic heart disease:key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart
Circadian rhythms are internal regulatory processes controlled by molecular clocks present in essentially every mammalian organ that temporally regulate major physiological functions. In the cardiovascular system, the circadian clock governs heart rate, blood pressure, cardiac metabolism, contractility and coagulation. Recent experimental and clinical studies highlight the possible importance of circadian rhythms in the pathophysiology, outcome, or treatment success of cardiovascular disease, including ischaemic heart disease. Disturbances in circadian rhythms are associated with increased cardiovascular risk and worsen outcome. Therefore, it is important to consider circadian rhythms as a key research parameter to better understand cardiac physiology/pathology, and to improve the chances of translation and efficacy of cardiac therapies, including those for ischaemic heart disease. The aim of this Position Paper by the European Society of Cardiology Working Group Cellular Biology of the Heart is to highlight key aspects of circadian rhythms to consider for improvement of preclinical and translational studies related to ischaemic heart disease and cardioprotection. Applying these considerations to future studies may increase the potential for better translation of new treatments into successful clinical outcomes
The haemochromatosis gene Hfe and Kupffer cells control LDL cholesterol homeostasis and impact on atherosclerosis development.
Imbalances of iron metabolism have been linked to the development of atherosclerosis. However, subjects with hereditary haemochromatosis have a lower prevalence of cardiovascular disease. The aim of our study was to understand the underlying mechanisms by combining data from genome-wide association study analyses in humans, CRISPR/Cas9 genome editing, and loss-of-function studies in mice.
Our analysis of the Global Lipids Genetics Consortium (GLGC) dataset revealed that single nucleotide polymorphisms (SNPs) in the haemochromatosis gene HFE associate with reduced low-density lipoprotein cholesterol (LDL-C) in human plasma. The LDL-C lowering effect could be phenocopied in dyslipidaemic ApoE-/- mice lacking Hfe, which translated into reduced atherosclerosis burden. Mechanistically, we identified HFE as a negative regulator of LDL receptor expression in hepatocytes. Moreover, we uncovered liver-resident Kupffer cells (KCs) as central players in cholesterol homeostasis as they were found to acquire and transfer LDL-derived cholesterol to hepatocytes in an Abca1-dependent fashion, which is controlled by iron availability.
Our results disentangle novel regulatory interactions between iron metabolism, KC biology and cholesterol homeostasis which are promising targets for treating dyslipidaemia but also provide a mechanistic explanation for reduced cardiovascular morbidity in subjects with haemochromatosis
Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC working group on myocardial function and the ESC Working Group on Cellular Biology of the Heart
Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies. All of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task. In particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and co-morbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans. This is also influenced by the fact that new, human-derived in vitro models can recapitulate aspects of disease processes. However, it would be a mistake to think that animal models cannot provide a vital step in the translational pathway as they do provide important pathophysiological insights into disease mechanisms particularly on a organ and systemic level. While stem cell-derived human models have the potential to become key in testing toxicity and effectiveness of new drugs, we need to be realistic, and carefully validate all new human-like disease models. In this position paper, we highlight recent advances in trying to reduce the number of animals for cardiovascular research ranging from stem cell-derived models to in situ modelling of heart properties, bioinformatic models based on large datasets, and improved current animal models, which show clinically relevant characteristics observed in patients with a cardiovascular disease. We aim to provide a guide to help researchers in their experimental design to translate bench findings to clinical routine taking the replacement, reduction and refinement (3R) as a guiding concept