643 research outputs found

    Oh! I Slipped the Surly Bounds of Earth....and Ran into Space Weather!

    Get PDF
    Over the past decade the concept of space weather has been introduced and matured in both the scientific community and popular press. Likewise the concept of space climatology recently also is being advanced. Closely linked to these concepts are their impacts on ground- and space-based technological systems; one such system commonly mentioned is manned space flight exemplified by the Space Shuttle and International Space Station (ISS). From a manned space flight perspective, space weather and space climatology have significant effects on the amount of radiation exposure received by humans in space from the ambient high-energy charged particles present in interplanetary space and trapped in the geomagnetosphere. Whereas the impact of space weather for most technological systems is usually discrete and well correlated in time, the principle impact of space weather and space climatology is to increase the probability of latent cancer formation in thetraveler cohort. In this regard, while space weather may be the dominating factor for a given mission, over the life of a long-term program such as the Space Shuttle or ISS space climatology is the controlling factor of latent cancer risk. Human radiation exposure enhancements associated with space weather disturbances has been a concern among scientist and mission controllers since the inception of manned spaceflight nearly forty years ago. This led NASA to develop, in conjunction with the Environmental Science Services Administration s Space Disturbance Forecast Center and the USAF/AWS, the Solar Particle Alert Network (SPAN)-the foundation of an initial U.S. space weather monitoring and forecasting service. Since Apollo, routine space flight operations have evolved to include the use of space weather and climatology data provided through a world-wide network of operational space weather data services to predict and recommend actions to minimize astronaut radiation exposures. NASA Space Radiation Analysis Group (SRAG) flight controllers use real-time space weather data to detect and assess the impact of solar particle events, outer electron belt enhancements, the formation of pseudo-stable additional trapped radiation belts, and the solar cycle modulation of trapped radiation belts and galactic cosmic rays. Energetic particle data from GOES spacecraft are automatically ingested from NOAA Space Environment Center data servers and used to drive a model for the estimating the exposure to astronauts from solar particle events. While adequate for current manned space flight support, the existing operational space weather support system requires improvements to address the anticipated evolution in both the character of manned missions as well as space flight operations management. Necessary space weather data improvements include: reliably available (near) real-time space weather data on a fixed schedule via redundant access methods that support autonomous data acquisition by computer systems behind enterprise firewalls; and rapid transition of promising research sensors into operational systems

    Neutron Measurements for Radiation Protection in Low Earth Orbit - History and Future

    Get PDF
    The neutron environment inside spacecraft has been of interest from a scientific and radiation protection perspective since early in the history of manned spaceflight. With 1:.1e exception of a few missions which carried plutonium-fueled radioisotope thermoelectric generators, all of the neutrons inside the spacecraft are secondary radiations resulting from interactions of high-energy charged particles with nuclei in the Earth's atmosphere, spacecraft structural materials, and the astronaut's own bodies. Although of great interest, definitive measurements of the spacecraft neutron field have been difficult due to the wide particle energy range and the limited available volume and power for traditional techniques involving Bonner spheres. A multitude of measurements, however, have been made of the neutron environment inside spacecraft. The majority of measurements were made using passive techniques including metal activation fo ils, fission foils, nuclear photoemulsions, plastic track detectors, and thermoluminescent detectors. Active measurements have utilized proton recoil spectrometers (stilbene), Bonner Spheres eRe proportional counter based), and LiI(Eu)phoswich scintillation detectors. For the International Space Station (ISS), only the plastic track! thermoluminescent detectors are used with any regularity. A monitoring program utilizing a set of active Bonner spheres was carried out in the ISS Lab module from March - December 200l. These measurements provide a very limited look at the crew neutron exposure, both in time coverage and neutron energy coverage. A review of the currently published data from past flights will be made and compared with the more recent results from the ISS. Future measurement efforts using currently available techniques and those in development will be also discussed

    The characteristics of railway service disruption: implications for disruption management

    Get PDF
    Rail disruption management is central to operational continuity and customer satisfaction. Disruption is not a unitary phenomenon - it varies by time, cause, location and complexity of coordination. Effective, user-centred technology for rail disruption must reflect this variety. A repertory grid study was conducted to elicit disruption characteristics. Construct elicitation with a group of experts (n=7) captured 26 characteristics relevant to rail disruption. A larger group of operational staff (n=28) rated 10 types of rail incident against the 26 characteristics. The results revealed distinctions such as business impact and public perception, and the importance of management of the disruption over initial detection. There were clear differences between those events that stop the traffic, as opposed to those that only slow the traffic. The results also demonstrate the utility of repertory grid for capturing the characteristics of complex work domains

    GCR access to the Moon as measured by the CRaTER instrument on LRO

    Get PDF
    [1] Recent modeling efforts have yielded varying and conflicting results regarding the possibility that Earth\u27s magnetosphere is able to shield energetic particles of \u3e10 MeV at lunar distances. This population of particles consists of galactic cosmic rays as well as energetic particles that are accelerated by solar flares and coronal mass ejections. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter is in orbit about the Moon and is thus able to directly test these modeling results. Over the course of a month, CRaTER samples the upstream solar wind as well as various regions of Earth\u27s magnetotail. CRaTER data from multiple lunations demonstrate that Earth\u27s magnetosphere at lunar distances produces no measurable influence on energetic particle flux, even at the lowest energies (\u3e14 MeV protons) where any effect should be maximized. For particles with energies of 14ā€“30 MeV, we calculate an upper limit (determined by counting statistics) on the amount of shielding caused by the magnetosphere of 1.7%. The high energy channel (\u3e500 MeV) provides an upper limit of 3.2%

    Human Performance in the Rail Freight Yard

    Get PDF
    Human performance in the rail freight yard has been identified as a source of risk for rail freight operations. This is both within the yard itself, and also with train preparation issues leading to incidents on the network. The rail freight yard is an area that has received limited research attention. Over 30 hours of observations were conducted at five major freight yards in Great Britain, along with 30 interviews of rail freight ground staff. Task models, human performance factors and potential solutions that were further explored in a workshop with freight personnel. This analysis led to an understanding of freight yard activities, the impact of freight yard design and environment, and the role external pressures on freight yard performance including upstream planning. The implications are discussed for both current freight operations, and for future technology and process change within the rail freight sector

    A Review of the Use of Propentofylline in the treatment of Dementia

    Get PDF

    New measurements of total ionizing dose in the lunar environment

    Get PDF
    [1] We report new measurements of solar minimum ionizing radiation dose at the Moon onboard the Lunar Reconnaissance Orbiter (LRO) from June 2009 through May 2010. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on LRO houses a compact and highly precise microdosimeter whose design allows measurements of dose rates below 1 micro-Rad per second in silicon achieved with minimal resources (20 g, āˆ¼250 milliwatts, and āˆ¼3 bits/second). We envision the use of such a small yet accurate dosimeter in many future spaceflight applications where volume, mass, and power are highly constrained. As this was the first operation of the microdosimeter in a space environment, the goal of this study is to verify its response by using simultaneous measurements of the galactic cosmic ray ionizing environment at LRO, at L1, and with other concurrent dosimeter measurements and model predictions. The microdosimeter measured the same short timescale modulations in the galactic cosmic rays as the other independent measurements, thus verifying its response to a known source of minimum-ionizing particles. The total dose for the LRO mission over the first 333 days was only 12.2 Rads behind āˆ¼130 mils of aluminum because of the delayed rise of solar activity in solar cycle 24 and the corresponding lack of intense solar energetic particle events. The dose rate in a 50 km lunar orbit was about 30 percent lower than the interplanetary rate, as one would expect from lunar obstruction of the visible sky

    The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations

    Get PDF
    [1] At the start of the Lunar Reconnaissance Orbiter mission in 2009, its Cosmic Ray Telescope for the Effects of Radiation instrument measured the radiation environment near the Moon during the recent deep solar minimum, when galactic cosmic rays (GCRs) were at the highest level observed during the space age. We present observations that show the combined effects of GCR primaries, secondary particles (ā€œalbedoā€) created by the interaction of GCRs with the lunar surface, and the interactions of these particles in the shielding material overlying the silicon solid-state detectors of the Cosmic Ray Telescope for the Effects of Radiation. We use Geant4 to model the energy and angular distribution of the albedo particles, and to model the response of the sensor to the various particle species reaching the 50 kilometer altitude of the Lunar Reconnaissance Orbiter. Using simulations to gain insight into the observations, we are able to present preliminary energy-deposit spectra for evaluation of the radiation environment\u27s effects on other sensitive materials, whether biological or electronic, that would be exposed to a similar near-lunar environment

    Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER)

    Get PDF
    [1] The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) measures linear energy transfer by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) on the Lunar Reconnaissance Orbiter (LRO) Mission in a circular, polar lunar orbit. GCR fluxes remain at the highest levels ever observed during the space age. One of the largest SEP events observed by CRaTER during the LRO mission occurred on June 7, 2011. We compare model predictions by the Earth-Moon-Mars Radiation Environment Module (EMMREM) for both dose rates from GCRs and SEPs during this event with results from CRaTER. We find agreement between these models and the CRaTER dose rates, which together demonstrate the accuracy of EMMREM, and its suitability for a real-time space weather system. We utilize CRaTER to test forecasts made by the Relativistic Electron Alert System for Exploration (REleASE), which successfully predicts the June 7th event. At the maximum CRaTER-observed GCR dose rate (āˆ¼11.7 cGy/yr where Gy is a unit indicating energy deposition per unit mass, 1 Gy = 1 J/kg), GCRs deposit āˆ¼88 eV/molecule in water over 4 billion years, causing significant change in molecular composition and physical structure (e.g., density, color, crystallinity) of water ice, loss of molecular hydrogen, and production of more complex molecules linking carbon and other elements in the irradiated ice. This shows that space weathering by GCRs may be extremely important for chemical evolution of ice on the Moon. Thus, we show comprehensive observations from the CRaTER instrument on the Lunar Reconnaissance Orbiter that characterizes the radiation environment and space weathering on the Moon

    A Review of the Use of Donepezil in the Treatment of Alzheimerā€™s Disease

    Get PDF
    • ā€¦
    corecore