144 research outputs found

    Watch the Moon, Learn the Moon: Lunar Geology Research at School Level with Telescope and Open Source Data

    Full text link
    Science-AI Symbiotic Group at Seven Square Academy, Naigaon was formed in 2023 with the purpose of bringing school students to the forefronts of science research by involving them in hands on research. In October 2023 a new project was started with the goal of studying the lunar surface by real-time observations and open source data. Twelve students/members from grades 8, 9, 10 participated in this research attempt wherein each student filled an observation metric by observing the Moon on various days with a Bresser Messier 150mm/1200mm reflector Newtonian telescope. After the observations were done, the members were assigned various zones on the lunar near side for analysis of geological features. Then a data analysis metric was filled by each of students with the help of Lunar Reconnaissance Orbiter Camera's/ LROC's quickmap open access data hosted by Arizona State University. In this short paper a brief overview of this project is given. One example each of observation metric and data analysis metric is presented. This kind of project has high impact for school science education with minimal costs. This project can also serve as an interesting science outreach program for organisations looking forward to popularise planetary sciences research at school level.Comment: 14 pages, 7 figure

    The CMS Statistical Analysis and Combination Tool: COMBINE

    No full text
    International audienceThis paper describes the COMBINE software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to run COMBINE and reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details of COMBINE. However, the online documentation referenced within this paper provides an up-to-date and complete user guide

    Search for long-lived heavy neutrinos in the decays of B mesons produced in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for long-lived heavy neutrinos (N) in the decays of \PB mesons produced in proton-proton collisions at s\sqrt{s} = 13 TeV is presented. The data sample corresponds to an integrated luminosity of 41.6 fb1^{-1} collected in 2018 by the CMS experiment at the CERN LHC, using a dedicated data stream that enhances the number of recorded events containing B mesons. The search probes heavy neutrinos with masses in the range 1 <\ltmNm_\mathrm{N}<\lt 3 GeV and decay lengths in the range 102^{-2}<\ltcτc\tau<\lt 104^{4} mm, where τN\tau_\mathrm{N} is the N proper mean lifetime. Signal events are defined by the signature B \toB\ell_\mathrm{B}NX; N \to±π\ell^{\pm} \pi^{\mp}, where the leptons B\ell_\mathrm{B} and \ell can be either a muon or an electron, provided that at least one of them is a muon. The hadronic recoil system, X, is treated inclusively and is not reconstructed. No significant excess of events over the standard model background is observed in any of the ±π\ell^{\pm}\pi^{\mp} invariant mass distributions. Limits at 95% confidence level on the sum of the squares of the mixing amplitudes between heavy and light neutrinos, VN2\vert V_\mathrm{N}\vert^2, and on cτc\tau are obtained in different mixing scenarios for both Majorana and Dirac-like N particles. The most stringent upper limit VN2\vert V_\mathrm{N}\vert^2 <\lt 2.0×\times105^{-5} is obtained at mNm_\mathrm{N} = 1.95 GeV for the Majorana case where N mixes exclusively with muon neutrinos. The limits on VN2\vert V_\mathrm{N}\vert^2 for masses 1 <\lt mNm_\mathrm{N} <\lt 1.7 GeV are the most stringent from a collider experiment to date

    Dark sector searches with the CMS experiment

    No full text
    Astrophysical observations provide compelling evidence for gravitationally interacting dark matter in the universe that cannot be explained by the standard model of particle physics. The extraordinary amount of data from the CERN LHC presents a unique opportunity to shed light on the nature of dark matter at unprecedented collision energies. This Report comprehensively reviews the most recent searches with the CMS experiment for particles and interactions belonging to a dark sector and for dark-sector mediators. Models with invisible massive particles are probed by searches for signatures of missing transverse momentum recoiling against visible standard model particles. Searches for mediators are also conducted via fully visible final states. The results of these searches are compared with those obtained from direct-detection experiments. Searches for alternative scenarios predicting more complex dark sectors with multiple new particles and new forces are also presented. Many of these models include long-lived particles, which could manifest themselves with striking unconventional signatures with relatively small amounts of background. Searches for such particles are discussed and their impact on dark-sector scenarios is evaluated. Many results and interpretations have been newly obtained for this Report.Astrophysical observations provide compelling evidence for gravitationally interacting dark matter in the universe that cannot be explained by the standard model of particle physics. The extraordinary amount of data from the CERN LHC presents a unique opportunity to shed light on the nature of dark matter at unprecedented collision energies. This Report comprehensively reviews the most recent searches with the CMS experiment for particles and interactions belonging to a dark sector and for dark-sector mediators. Models with invisible massive particles are probed by searches for signatures of missing transverse momentum recoiling against visible standard model particles. Searches for mediators are also conducted via fully visible final states. The results of these searches are compared with those obtained from direct-detection experiments. Searches for alternative scenarios predicting more complex dark sectors with multiple new particles and new forces are also presented. Many of these models include long-lived particles, which could manifest themselves with striking unconventional signatures with relatively small amounts of background. Searches for such particles are discussed and their impact on dark-sector scenarios is evaluated. Many results and interpretations have been newly obtained for this Report

    Observation of double J/ψ\psi meson production in pPb collisions at sNN\sqrt{s_\mathrm{NN}} = 8.16 TeV

    No full text
    International audienceThe first observation of the concurrent production of two J/ψ\psi mesons in proton-nucleus collisions is presented. The analysis is based on a proton-lead (pPb) data sample recorded at a nucleon-nucleon center-of-mass energy of 8.16 TeV by the CMS experiment at the CERN LHC and corresponding to an integrated luminosity of 174.6 nb1^{-1}. The two J/ψ\psi mesons are reconstructed in their μ+μ\mu^+\mu^- decay channels with transverse momenta pTp_\mathrm{T}>\gt 6.5 GeV and rapidity y\lvert y \rvert<\lt 2.4. Events where one of the J/ψ\psi mesons is reconstructed in the dielectron channel are also considered in the search. The pPb \to J/ψ\psiJ/ψ\psi+X process is observed with a significance of 5.3 standard deviations. The measured inclusive fiducial cross section, using the four-muon channel alone, is σ\sigma(pPb\to J/ψ\psiJ/ψ\psi+X)= 22.0 ±\pm 8.9 (stat) ±\pm 1.5 (syst) nb. A fit of the data to the expected rapidity separation for pairs of J/ψ\psi mesons produced in single (SPS) and double (DPS) parton scatterings yields σSPSpPbJ/ψJ/ψ+X\sigma^{\mathrm{pPb}\to\mathrm{J}/\psi\mathrm{J}/\psi+\mathrm{X}}_\text{SPS} = 16.5 ±\pm 10.8 (stat) ±\pm 0.1 (syst) nb and σDPSpPbJ/ψJ/ψ+X\sigma^{\mathrm{pPb}\to \mathrm{J}/\psi\mathrm{J}/\psi+\mathrm{X}}_\text{DPS} = 5.4 ±\pm 6.2 (stat) ±\pm 0.4 (syst) nb, respectively. This latter result can be transformed into a lower bound on the effective DPS cross section, closely related to the squared average interparton transverse separation in the collision, of σeff\sigma_\text{eff}>\gt 1.0 mb at 95% confidence level

    Constraints on the Higgs boson self-coupling from the combination of single and double Higgs boson production in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe Higgs boson (H) trilinear self-coupling, λ3\lambda_3, is constrained via its measured properties and limits on the HH pair production using the proton-proton collision data collected by the CMS experiment at s\sqrt{s} = 13 TeV. The combination of event categories enriched in single-H and HH events is used to measure κλ\kappa_\lambda, defined as the value of λ3\lambda_3 normalized to its standard model prediction, while simultaneously constraining the Higgs boson couplings to fermions and vector bosons. Values of κλ\kappa_\lambda outside the interval -1.2 <\ltκλ\kappa_\lambda<\lt 7.5 are excluded at 2σ\sigma confidence level, which is compatible with the expected range of -2.0 <\ltκλ\kappa_\lambda<\lt 7.7 under the assumption that all other Higgs boson couplings are equal to their standard model predicted values. Relaxing the assumption on the Higgs couplings to fermions and vector bosons the observed (expected) κλ\kappa_\lambda interval is constrained to be within -1.4 <\ltκλ\kappa_\lambda<\lt 7.8 (-2.3 <\ltκλ\kappa_\lambda<\lt 7.8) at 2σ\sigma confidence level

    Search for bottom quark associated production of the standard model Higgs boson in final states with leptons in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThis Letter presents the first search for bottom quark associated production of the standard model Higgs boson, in final states with leptons. Higgs boson decays to pairs of tau leptons and pairs of leptonically decaying W bosons are considered. The search is performed using data collected from 2016 to 2018 by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1{-1}. Upper limits at the 95% confidence level are placed on the signal strength for Higgs boson production in association with bottom quarks; the observed (expected) upper limit is 3.7 (6.1) times the standard model prediction

    Dark sector searches with the CMS experiment

    No full text
    International audienceAstrophysical observations provide compelling evidence for gravitationally interacting dark matter in the universe that cannot be explained by the standard model of particle physics. The extraordinary amount of data from the CERN LHC presents a unique opportunity to shed light on the nature of dark matter at unprecedented collision energies. This Report comprehensively reviews the most recent searches with the CMS experiment for particles and interactions belonging to a dark sector and for dark-sector mediators. Models with invisible massive particles are probed by searches for signatures of missing transverse momentum recoiling against visible standard model particles. Searches for mediators are also conducted via fully visible final states. The results of these searches are compared with those obtained from direct-detection experiments. Searches for alternative scenarios predicting more complex dark sectors with multiple new particles and new forces are also presented. Many of these models include long-lived particles, which could manifest themselves with striking unconventional signatures with relatively small amounts of background. Searches for such particles are discussed and their impact on dark-sector scenarios is evaluated. Many results and interpretations have been newly obtained for this Report

    Search for light long-lived particles decaying to displaced jets in proton-proton collisions at s\sqrt{s} = 13.6 TeV

    No full text
    International audienceA search for light long-lived particles decaying to displaced jets is presented, using a data sample of proton-proton collisions at a center-of-mass energy of 13.6 TeV, corresponding to an integrated luminosity of 34.7 fb1^{-1}, collected with the CMS detector at the CERN LHC in 2022. Novel trigger, reconstruction, and machine-learning techniques were developed for and employed in this search. After all selections, the observations are consistent with the background predictions. Limits are presented on the branching fraction of the Higgs boson to long-lived particles that subsequently decay to quark pairs or tau lepton pairs. An improvement by up to a factor of 10 is achieved over previous limits for models with long-lived particle masses smaller than 60 GeV and proper decay lengths smaller than 1 m. The first constraints are placed on the fraternal twin Higgs and folded supersymmetry models, where the lower bounds on the top quark partner mass reach up to 350 GeV for the fraternal twin Higgs model and 250 GeV for the folded supersymmetry model
    corecore