252 research outputs found

    Voltage-controlled inversion of tunnel magnetoresistance in epitaxial Nickel/Graphene/MgO/Cobalt junctions

    Get PDF
    We report on the fabrication and characterization of vertical spin-valve structures using a thick epitaxial MgO barrier as spacer layer and a graphene-passivated Ni film as bottom ferromagnetic electrode. The devices show robust and scalable tunnel magnetoresistance, with several changes of sign upon varying the applied bias voltage. These findings are explained by a model of phonon-assisted transport mechanisms that relies on the peculiarity of the band structure and spin density of states at the hybrid graphene|Ni interface

    Paragenesis of multiple platinum-group mineral populations in Shetland ophiolite chromitite: 3D X-ray tomography and in situ Os isotopes

    Get PDF
    Chromitite from the Harold’s Grave locality in the mantle section of the Shetland ophiolite complex is extremely enriched in Ru, Os and Ir, at ”g/g concentrations. High-resolution X-ray computed tomography on micro-cores from these chromitites was used to determine the location, size, distribution and morphology of the platinum-group minerals (PGM). There are five generations of PGM in these chromitites. Small (average 5 ”m in equivalent sphere diameter, ESD) euhedral laurites, often with Os-Ir alloys, are totally enclosed in the chromite and are likely to have formed first by direct crystallisation from the magma as the chromite crystallised. Also within the chromitite there are clusters of larger (50 ”m ESD) aligned elongate crystals of Pt-, Rh-, Ir-, Os- and Ru-bearing PGM that have different orientations in different chromite crystals. These may have formed either by exsolution, or by preferential nucleation of PGMs in boundary layers around particular growing chromite grains. Thirdly there is a generation of large (100 ”m ESD) composite Os-Ir-Ru-rich PGM that are all interstitial to the chromite grains and sometimes form in clusters. It is proposed that Os, Ir and Ru in this generation were concentrated in base metal sulfide droplets that were then re-dissolved into a later sulfide-undersaturated magma, leaving PGM interstitial to the chromite grains. Fourthly there is a group of almost spherical large (80 ”m ESD) laurites, hosting minor Os-Ir-Ru-rich PGM that form on the edge or enclosed in chromite grains occurring in a sheet crosscutting a chromitite layer. These may be hosted in an annealed late syn- or post magmatic fracture. Finally a few of the PGM have been deformed in localised shear zones through the chromitites. The vast majority of the PGM – including small PGM enclosed within chromite, larger interstitial PGM and elongate aligned PGM – have Os isotope compositions that give Re-depletion model ages approximately equal to the age of the ophiolite at ∌492 Ma. A number of other PGM – not confined to a single textural group – fall to more or less radiogenic values, with four PGM giving anomalously unradiogenic Os corresponding to an older age of ∌1050 Ma. The 187Os/188Os isotopic ratios for PGM from Cliff and Quoys, from the same ophiolite section, are somewhat more radiogenic than those at Harold’s Grave. This may be due to a distinct mantle source history or possibly the assimilation of radiogenic crustal Os

    Evidence for two stages of mineralization in West Africa's largest gold deposit: Obuasi, Ghana

    Get PDF
    The supergiant Obuasi gold deposit is the largest deposit in the Paleoproterozoic Birimian terranes of West Africa with 62 Moz of gold (past production + resources). The deposit is hosted in the Paleoproterozoic Kumasi Group sedimentary rocks composed of carbonaceous phyllites, slates, psammites, and volcaniclastic rocks intruded by different generations of felsic dikes and granites. A three-stage deformation history is defined for the district. The D1Ob stage is weakly recorded in the sedimentary rocks as a layer-parallel fabric and indicates that bedding parallel shearing occurred during the early stage of deformation at Obuasi. The D2Ob is the main deformation stage affecting the Obuasi district and corresponds to a NW-SE shortening. Tight to isoclinal folding, as well as intense subhorizontal stretching, occurred during D2Ob, parallel with the plane of a pervasive NE-striking subvertical foliation (S2Ob). Finally, a N-S shortening event (D3Ob) refolded previously formed structures and formed a distinct ENE-striking, variably dipping S3Ob cleavage that is domainal in nature throughout the deposit. Two economic styles of mineralization occur at Obuasi and contribute equally to the gold budget. These are (1) gold-bearing sulfides, dominantly arsenopyrite, mainly disseminated in metasedimentary rocks and (2) native gold hosted in quartz veins that are as much as 25 m wide. Microstructural evidence, such as strain shadows surrounding gold-bearing arsenopyrite parallel with S2Ob, but folded by S3Ob, indicates that the sulfides were formed during D2Ob. Concentrations of as much as 700 ppm Au are present in the epitaxial growth zones of the arsenopyrite grains. Although the large mineralized quartz veins are boudinaged and refolded (indicating their formation during D2Ob), field and microanalytical observations demonstrate that the gold in the veins is hosted in microcracks controlled by D3Ob, where the S3Ob cleavage crosscuts the quartz veins in the main ore zones. Thus, these observations constitute the first evidence for multiple stages of gold deposition at the Obuasi deposit. Futhermore, three-dimensional modeling of stratigraphy, structure, and gold orebodies highlights three major controls on oreshoot location, which are (1) contacts between volcaniclastic units and pre-D1 felsic dikes, (2) fault intersections, and (3) F3Ob fold hinges. The maximum age for the older disseminated gold event is given by the age of the granites at 2105 ± 2 Ma, which is within error of hydrothermal rutile in the granites of 2098 ± 7 Ma; the absolute age of the younger gold event is not known

    Relationship between microstructures and grain-scale trace element distribution in komatiite-hosted magmatic sulphide ores

    Get PDF
    Komatiite-hosted nickel sulphides from the Yilgarn Craton (Australia) consist of two main sulphide phases: pyrrhotite (Fe7S8) and pentlandite ((Fe,Ni)9S8); two minor sulphide phases: chalcopyrite (CuFeS2) and pyrite (FeS2) and trace arsenides. Samples of massive sulphides from three deposits with diverse deformation and metamorphic histories (the Silver Swan, Perseverance and Flying Fox deposits) have been studied by electron backscatter diffraction and laser ablation inductively coupled plasma mass spectrometry and nano-scale secondary ion mass spectrometry. These ore bodies were selected to investigate the relationship between microstructures and mineral trace element chemistry in three dominant sulphide species in each deposit. In all three samples, pyrrhotite preserves a strong evidence of crystal plasticity relative to both pentlandite and pyrite. The trace element composition of pyrrhotite shows significant variation in specific elements (Pb, Bi and Ag). This variation correlates spatially with intragrain pyrrhotite microstructures, such as low angle and twin boundaries. Minor signatures of crystal plasticity in pyrite and pentlandite occur in the form of rare low angle boundaries (pentlandite) and mild lattice misorientation (pyrite). Trace element compositions of pentlandite and pyrite show no correlation with microstructures.Variations in pyrrhotite are interpreted as a result of intragrain diffusion during the syn- and post-deformation history of the deposit. Intragrain diffusion can occur either due to bulk diffusion, dislocation–impurity pair diffusion, or by “pipe diffusion”, i.e. along fast diffusion pathways at high and low angle, and twin boundaries. This contribution examines three different diffusion models and suggests that dislocation–impurity pair diffusion and pipe diffusion are the most likely processes behind increased trace element concentration along the microstructures in pyrrhotite. The same phenomenon is observed in samples from three different deposits that experienced widely different metamorphic conditions, implying that the final disposition of these elements reflects a post peak-metamorphic stage of the geological history of all three deposits

    The structure of and origin of nodular chromite from the Troodos ophiolite, Cyprus, revealed using high-resolution X-ray computed tomography and electron backscatter diffraction

    Get PDF
    Nodular chromite is a characteristic feature of ophiolitic podiform chromitite and there has been much debate about how it forms. Nodular chromite from the Troodos ophiolite in Cyprus is unusual in that it contains skeletal crystals enclosed within the centres of the nodules and interstitial to them. 3D imaging and electron backscatter diffraction have shown that the skeletal crystals within the nodules are single crystals that are surrounded by a rim of polycrystalline chromite. 3D analysis reveals that the skeletal crystals are partially or completely formed cage or hopper structures elongated along the axis. The rim is composed of a patchwork of chromite grains that are truncated on the outer edge of the rim. The skeletal crystals formed first from a magma supersaturated in chromite and silicate minerals crystallised from melt trapped between the chromite skeletal crystal blades as they grew. The formation of skeletal crystals was followed by a crystallisation event which formed a silicate-poor rim of chromite grains around the skeletal crystals. These crystals show a weak preferred orientation related to the orientation of the core skeletal crystal implying that they formed by nucleation and growth on this core, and did not form by random mechanical aggregation. Patches of equilibrium adcumulate textures within the rim attest to in situ development of such textures. The nodules were subsequently exposed to chromite under-saturated magma resulting in dissolution, recorded by truncated grain boundaries in the rim and a smooth outer surface to the nodule. None of these stages of formation require a turbulent magma. Lastly the nodules impinged on each other causing local deformation at points of contact

    Morphology and microstructure of chromite crystals in chromitites from the Merensky Reef (Bushveld Complex, South Africa)

    Get PDF
    The Merensky Reef of the Bushveld Complex consists of two chromitite layers separated by coarse-grained melanorite. Microstructural analysis of the chromitite layers using electron backscatter diffraction analysis (EBSD), high-resolution X-ray microtomography and crystal size distribution analyses distinguished two populations of chromite crystals: fine-grained idiomorphic and large silicate inclusion-bearing crystals. The lower chromitite layer contains both populations, whereas the upper contains only fine idiomorphic grains. Most of the inclusion-bearing chromites have characteristic amoeboidal shapes that have been previously explained as products of sintering of pre-existing smaller idiomorphic crystals. Two possible mechanisms have been proposed for sintering of chromite crystals: (1) amalgamation of a cluster of grains with the same original crystallographic orientation; and (2) sintering of randomly orientated crystals followed by annealing into a single grain. The EBSD data show no evidence for clusters of similarly oriented grains among the idiomorphic population, nor for earlier presence of idiomorphic subgrains spatially related to inclusions, and therefore are evidence against both of the proposed sintering mechanisms. Electron backscatter diffraction analysis maps show deformation-related misorientations and curved subgrain boundaries within the large, amoeboidal crystals, and absence of such features in the fine-grained population. Microstructures observed in the lower chromitite layer are interpreted as the result of deformation during compaction of the orthocumulate layers, and constitute evidence for the formation of the amoeboid morphologies at an early stage of consolidation.An alternative model is proposed whereby silicate inclusions are incorporated during maturation and recrystallisation of initially dendritic chromite crystals, formed as a result of supercooling during emplacement of the lower chromite layer against cooler anorthosite during the magma influx that formed the Merensky Reef. The upper chromite layer formed from a subsequent magma influx, and hence lacked a mechanism to form dendritic chromite. This accounts for the difference between the two layers

    WS2 2D Semiconductor Down to Monolayers by Pulsed-Laser Deposition for Large-Scale Integration in Electronics and Spintronics Circuits

    Get PDF
    We report on the achievement of a large-scale tungsten disulfide (WS2) 2D semiconducting platform derived by pulsed-laser deposition (PLD) on both insulating substrates (SrTiO3), as required for in-plane semiconductor circuit definition, and ferromagnetic spin sources (Ni), as required for spintronics applications. We show thickness and phase control, with highly homogeneous wafer-scale monolayers observed under certain conditions, as demonstrated by X-ray photoelectron spectroscopy and Raman spectroscopy mappings. Interestingly, growth appears to be dependent on the substrate selection, with a dramatically increased growth rate on Ni substrates. We show that this 2D-semiconductor integration protocol preserves the interface integrity. Illustratively, the WS2/Ni electrode is shown to be resistant to oxidation (even after extended exposure to ambient conditions) and to present tunneling characteristics once integrated into a complete vertical device. Overall, these experiments show that the presented PLD approach used here for WS2 growth is versatile and has a strong potential to accelerate the integration and evaluation of large-scale 2D-semiconductor platforms in electronics and spintronics circuits

    A perpendicular graphene/ferromagnet electrode for spintronics

    Get PDF
    We report on the large-scale integration of graphene layers over a FePd perpendicular magnetic anisotropy (PMA) platform, targeting further downscaling of spin circuits. An L10 FePd ordered alloy showing both high magneto-crystalline anisotropy and a low magnetic damping constant, is deposited by magnetron sputtering. The graphene layer is then grown on top of it by large-scale chemical vapor deposition. A step-by-step study, including structural and magnetic analyses by x-ray diffraction and Kerr microscopy, shows that the measured FePd properties are preserved after the graphene deposition process. This scheme provides a graphene protected perpendicular spin electrode showing resistance to oxidation, atomic flatness, stable crystallinity, and perpendicular magnetic properties. This, in turn, opens the way to the generalization of hybrid 2D-materials on optimized PMA platforms, sustaining the development of spintronics circuits based on perpendicular spin-sources as required, for instance, for perpendicular-magnetic random-access memory schemes

    Atomic layer deposition of a MgO barrier for a passivated black phosphorus spintronics platform

    Get PDF
    We demonstrate a stabilized black phosphorus (BP) 2D platform thanks to an ultrathin MgO barrier, as required for spintronic device integration. The in-situ MgO layer deposition is achieved by using a large-scale atomic layer deposition process with high nucleation density. Raman spectroscopy studies show that this layer protects the BP from degradation in ambient conditions, unlocking in particular the possibility to carry out usual lithographic fabrication steps. The resulting MgO/BP stack is then integrated in a device and probed electrically, confirming the tunnel properties of the ultrathin MgO contacts. We believe that this demonstration of a BP material platform passivated with a functional MgO tunnel barrier provides a promising perspective for BP spin transport devices
    • 

    corecore