20 research outputs found

    A short oxazolidine-2-one containing peptide forms supramolecular hydrogels under controlled conditions

    Get PDF
    Low-molecular-weight hydrogels are made of a small percentage of small organic molecules dispersed in an aqueous medium, which may aggregate in several manners using different methods. However, often the organic gelator in water has poor solubility, so the addition of a solubilising agent is required. In the case of acidic gelators, this mainly consists of the addition of a strong base, that is sodium hydroxide, that deprotonates the acidic moiety, so the gelator molecules become more soluble and tend to assemble into micelles, forming a dispersion. Some gelators, however, are sensitive to the harsh pH and get hydrolysed. This is the case of some molecules presenting carbamates in their features, like Fmoc-protected or oxazolidinone-containing peptides. In this paper, we present a valid alternative to sodium hydroxide, by dissolving a tripeptide containing an oxazolidinone moiety in a phosphate buffer (PB) medium at pH 7.4. The results obtained with the NaOH dissolution are compared with the ones with PB, as both methods present advantages and drawbacks. The use of NaOH produces transparent but weak hydrogels, as it exposes the gelator to harsh conditions that end up in its partial hydrolysis, which is more pronounced at high concentrations (≥10 mM). Using PB to dissolve the gelator, this problem is completely avoided as no hydrolysis product has been detected in the hydrogels, which are very stiff although more opaque. By tuning the preparation conditions, we can obtain a wide variety of hydrogels, with the properties required by the final application

    influence of mechanical parameters on non linear static analysis of masonry buildings a relevant case study

    Get PDF
    Abstract In seismic zones, suitable procedures to assess the seismic vulnerability of existing buildings are necessary also in view of optimal planning of interventions. Starting from the agreement between the Municipality of Florence and the Department of Civil and Industrial Engineering of the University of Pisa, a research program is ongoing, devoted to setup a simplified, fast but reliable procedure for the evaluation of seismic performance of masonry buildings. In this paper, a simplified non-linear pushover type method for the verification of unreinforced multi-story masonry buildings with both deformable and non-deformable slabs is presented, starting from some of the basic assumptions of the POR method. Various tests on the procedure show that the method is able to give results that are comparable with those obtained by the classical pushover analysis performed on equivalent frame models. The intuitiveness of the method and the low computational effort required by the new algorithm allow the evaluation of the sensitivity of non-linear static analysis regarding the definition of mechanical parameters. In particular, the relevant influence of the modulus of elasticity as well as the ultimate inter-story displacement assumed for masonry walls on the assessment of seismic performance are discussed in detail. The results are presented for a significant case study, the Primary School "G. Carducci" in Florence, a four-story masonry building, with a horseshoe layout where lateral appendixes detached from the central block

    Delivery of Active Peptides by Self-Healing, Biocompatible and Supramolecular Hydrogels

    Get PDF
    Supramolecular and biocompatible hydrogels with a tunable pH ranging from 5.5 to 7.6 lead to a wide variety of formulations useful for many different topical applications compatible with the skin pH. An in vitro viability/cytotoxicity test of the gel components demonstrated that they are non-toxic, as the cells continue to proliferate after 48 h. An analysis of the mechanical properties demonstrates that the hydrogels have moderate strength and an excellent linear viscoelastic range with the absence of a proper breaking point, confirmed with thixotropy experiments. Two cosmetic active peptides (Trifluoroacetyl tripeptide-2 and Palmitoyl tripeptide-5) were successfully added to the hydrogels and their transdermal permeation was analysed with Franz diffusion cells. The liquid chromatography-mass spectrometry (HPLC-MS) analyses of the withdrawn samples from the receiving solutions showed that Trifluoroacetyl tripeptide-2 permeated in a considerable amount while almost no transdermal permeation of Palmitoyl tripeptide-5 was observed

    Geophysical investigations to search for the remains of sister Chiara Isabella D'Amato

    No full text
    This paper reports the results of the integrated geophysical surveys performed inside the Monastery of St Chiara in Nardó in southern Italy. Ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) investigations were carried out to find the tomb of Sister Chiara D’Amato, whose location has been lost over the centuries. Sister Chiara Isabella D'Amato was a charismatic and holy figure. She died in 1693. She was buried inside the monastery but her body has never been found. The data acquisition was performed along with a series of closely spaced lines for GPR and using a non-standard array for ERT. Data were processed and visualised as two-dimensional vertical sections and depth slices or three-dimensional volumes (GPR and ERT) to allow an integrated interpretation of the geophysical results. The analysis of the geophysical data sets revealed a series of anomalies that could be ascribed possible archaeological structures, probably related to the earliest ages of the sacred building as well as other anomalies (bedrock, fractures) of presumable natural origin. In particular, one geophysical anomaly was suspected of being connected to burial and consequently further investigated with the use of a video endoscope. The results reveal the presence of a void but it has not yet been clarified whether it is the burial of Sister Chiara or not as it is awaiting the excavation

    Designing a Transparent and Fluorine Containing Hydrogel

    No full text
    Physical hydrogels are supramolecular materials obtained by self-assembly of small molecules called gelators. Aromatic amino acids and small peptides containing aromatic rings are good candidates as gelators due to their ability to form weak bonds as π-π interactions and hydrogen bonds between NH and CO of the peptide chain. In this paper we show our results in the preparation of a transparent hydrogel that was obtained by self-assembly of a fluorine-containing dipeptide that relies on the additional formation of halogen bonds due to the fluorine atoms contained in the dipeptide. We used Boc-D-F2Phe-L-Oxd-OH (F2Phe = 3,4-difluorophenylalainine; Oxd = 4-methyl-5-carboxy-oxazolidin-2-one) that formed a strong and transparent hydrogel in 0.5% w/w concentration at pH = 4.2. The formation of a hydrogel made of unnatural fluorinated amino acids may be of great interest in the evaluation of patients with parkinsonian syndromes and may be used for controlled release

    Fluorine Effect in the Gelation Ability of Low Molecular Weight Gelators

    No full text
    The three gelators presented in this work (Boc-D-Phe-L-Oxd-OH F0, Boc-D-F1Phe-L-Oxd-OH F1 and Boc-D-F2Phe-L-Oxd-OH F2) share the same scaffold and differ in the number of fluorine atoms linked to the aromatic ring of phenylalanine. They have been applied to the preparation of gels in 0.5% or 1.0% w/v concentration, using three methodologies: solvent switch, pH change and calcium ions addition. The general trend is an increased tendency to form structured materials from F0 to F1 and F2. This property ends up in the formation of stronger materials when fluorine atoms are present. Some samples, generally formed by F1 or F2 in 0.5% w/v concentration, show high transparency but low mechanical properties. Two gels, both containing fluorine atoms, show increased stiffness coupled with high transparency. The biocompatibility of the gelators was assessed exposing them to fibroblast cells and demonstrated that F1 and F2 are not toxic to cells even in high concentration, while F0 is not toxic to cells only in a low concentration. In conclusion, the presence of even only one fluorine atom improves all the gelators properties: the gelation ability of the compound, the rheological properties and the transparency of the final materials and the gelator biocompatibility

    Controlled Hydrolysis of Odorants Schiff Bases in Low-Molecular-Weight Gels

    No full text
    Imines or Schiff bases (SB) are formed by the condensation of an aldehyde or a ketone with a primary amine, with the removal of a water molecule. Schiff bases are central molecules in several biological processes for their ability to form and cleave by small variation of the medium. We report here the controlled hydrolysis of four SBs that may be applied in the fragrance industry, as they are profragrances all containing odorant molecules: methyl anthranilate as primary amine, and four aldehydes (cyclamal, helional, hydroxycitronellal and triplal) that are very volatile odorants. The SB stability was assessed over time by HPLC-MS in neutral or acidic conditions, both in solution and when trapped in low molecular weight gels. Our results demonstrate that it is possible to control the hydrolysis of the Schiff bases in the gel environment, thus tuning the quantity of aldehyde released and the persistency of the fragrance
    corecore