108 research outputs found

    Advanced optical imaging for surgical vision

    Get PDF
    Please click Additional Files below to see the full abstract

    Making sense in surgery using Near-Infrared Optical Imaging

    Get PDF
    There is a pressing clinical need to provide image guidance during surgery. Currently, assessment of tissue that needs to be resected or avoided is performed subjectively leading to a large number of failures, patient morbidity and increased healthcare cost. Because near-infrared (NIR) light propagates deeply within living tissues and interacts with molecular constituents, it offers unparalleled capabilities for objectively identifying healthy and diseased tissue intraoperatively. These capabilities are well illustrated through the ongoing clinical translation of fluorescence imaging during oncologic surgery. In this presentation, we will review our efforts to provide real-time & wide-field image-guidance during surgery using NIR diffuse optical imaging. We will present our latest results in fluorescence and endogenous imaging towards real-time monitoring and image-guided surgical intervention

    Pancreas-Targeted NIR Fluorophores for Dual-Channel Image-Guided Abdominal Surgery

    Get PDF
    Objective: Pancreas-related complications are some of the most serious ones in abdominal surgery. The goal of this study was to develop and validate novel near-infrared (NIR) fluorophores that would enable real-time pancreas imaging to avoid the intraoperative pancreatic injury. Design: After initial screening of a large NIR fluorophore library, the performance of 3 selected pancreas-targeted 700 nm NIR fluorophores, T700-H, T700-F, and MB, were quantified in mice, rats, and pigs. Dose ranging using 25 and 100 nmol, and 2.5 μmol of T700-F, and its imaging kinetics over a 4 h period were tested in each species. Three different 800 nm NIR fluorophores were employed for dual-channel FLARE™ imaging in pigs: 2 μmol of ZW800-1 for vessels and kidney, 1 μmol of ZW800-3C for lymph nodes, and 2 μmol of ESNF31 for adrenal glands. Results: T700-F demonstrated the highest signal to background ratio (SBR), with peak SBR at 4 h postinjection in mice. In pigs, T700-F produced an SBR ≥ 2 against muscle, spleen, and lymph nodes for up to 8 h after a single intravenous injection. The combination of T700-F with each 800 nm NIR fluorophore provided simultaneous dual-channel intraoperative imaging of pancreas with surrounding organs in real time. Conclusion: Pancreas-targeted NIR fluorophores combined with the FLARE dual-channel imaging system enable the real-time intraoperative pancreas imaging which helps surgeons perform safer and more curative abdominal surgeries

    Laser line illumination scheme allowing the reduction of background signal and the correction of absorption heterogeneities effects for fluorescence reflectance imaging

    Get PDF
    International audienceIntraoperative fluorescence imaging in reflectance geometry is an attractive imaging modality as it allows to noninvasively monitor the fluorescence targeted tumors located below the tissue surface. Some drawbacks of this technique are the background fluorescence decreasing the contrast and absorption heterogeneities leading to misinterpretations concerning fluorescence concentrations. We propose a correction technique based on a laser line scanning illumination scheme. We scan the medium with the laser line and acquire at each position of the line both fluorescence and excitation images. We then use the finding that there is a relationship between the excitation intensity profile and the background fluorescence one to predict the amount of signal to subtract to the fluorescence images to get a better contrast. As the light absorption information is contained both in fluorescence and excitation images, this method also permits us to correct the effects of absorption heterogeneities. This technique has been validated on simulations and experimentally. Fluorescent inclusions are observed in several configurations at depths ranging from 1 mm to 1 cm. Results obtained with this technique are compared to those obtained with a classical wide-field detection scheme for the contrast enhancement and to the fluorescence by excitation ratio approach for the absorption correction

    Hyperspectral Imaging in Major Hepatectomies: Preliminary Results from the Ex-Machyna Trial.

    Get PDF
    Ischemia-reperfusion injury during major hepatic resections is associated with high rates of post-operative complications and liver failure. Real-time intra-operative detection of liver dysfunction could provide great insight into clinical outcomes. In the present study, we demonstrate the intra-operative application of a novel optical technology, hyperspectral imaging (HSI), to predict short-term post-operative outcomes after major hepatectomy. We considered fifteen consecutive patients undergoing major hepatic resection for malignant liver lesions from January 2020 to June 2021. HSI measures included tissue water index (TWI), organ hemoglobin index (OHI), tissue oxygenation (StO2%), and near infrared (NIR). Pre-operative, intra-operative, and post-operative serum and clinical outcomes were collected. NIR values were higher in unhealthy liver tissue (p = 0.003). StO2% negatively correlated with post-operative serum ALT values (r = -0.602), while ΔStO2% positively correlated with ALP (r = 0.594). TWI significantly correlated with post-operative reintervention and OHI with post-operative sepsis and liver failure. In conclusion, the HSI imaging system is accurate and precise in translating from pre-clinical to human studies in this first clinical trial. HSI indices are related to serum and outcome metrics. Further experimental and clinical studies are necessary to determine clinical value of this technology

    Toward Optimization of Imaging System and Lymphatic Tracer for Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer

    Get PDF
    Near-infrared (NIR) fluorescent sentinel lymph node (SLN) mapping in breast cancer requires optimized imaging systems and lymphatic tracers. A small, portable version of the FLARE imaging system, termed Mini-FLARE, was developed for capturing color video and two semi-independent channels of NIR fluorescence (700 and 800 nm) in real time. Initial optimization of lymphatic tracer dose was performed using 35-kg Yorkshire pigs and a 6-patient pilot clinical trial. More refined optimization was performed in 24 consecutive breast cancer patients. All patients received the standard of care using (99m)Technetium-nanocolloid and patent blue. In addition, 1.6 ml of indocyanine green adsorbed to human serum albumin (ICG:HSA) was injected directly after patent blue at the same location. Patients were allocated to 1 of 8 escalating ICG:HSA concentration groups from 50 to 1000 mu M. The Mini-FLARE system was positioned easily in the operating room and could be used up to 13 in. from the patient. Mini-FLARE enabled visualization of lymphatic channels and SLNs in all patients. A total of 35 SLNs (mean = 1.45, range 1-3) were detected: 35 radioactive (100%), 30 blue (86%), and 35 NIR fluorescent (100%). Contrast agent quenching at the injection site and dilution within lymphatic channels were major contributors to signal strength of the SLN. Optimal injection dose of ICG:HSA ranged between 400 and 800 mu M. No adverse reactions were observed. We describe the clinical translation of a new NIR fluorescence imaging system and define the optimal ICG:HSA dose range for SLN mapping in breast cancer.EndocrinologyOV5Oncologic ImagingImaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Multi-laboratory performance assessment of diffuse optics instruments: the BitMap exercise

    Full text link
    SIGNIFICANCE: Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. AIM: The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. APPROACH: The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). RESULTS: This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5  %   over 1 h, and day-to-day reproducibility of <3  %  . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. CONCLUSIONS: This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset-available soon in an open data repository-can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations
    corecore