15,396 research outputs found

    A Geometric Monte Carlo Algorithm for the Antiferromagnetic Ising model with "Topological" Term at θ=π\theta=\pi

    Get PDF
    In this work we study the two and three-dimensional antiferromagnetic Ising model with an imaginary magnetic field iθi\theta at θ=π\theta=\pi. In order to perform numerical simulations of the system we introduce a new geometric algorithm not affected by the sign problem. Our results for the 2D2D model are in agreement with the analytical solutions. We also present new results for the 3D3D model which are qualitatively in agreement with mean-field predictions

    Signatures of rotating binaries in micro-lensing experiments

    Full text link
    Gravitational microlensing offers a powerful method with which to probe a variety of binary-lens systems, as the binarity of the lens introduces deviations from the typical (single-lens) Paczy\'nski behaviour in the event light curves. Generally, a static binary lens is considered to fit the observed light curve and, when the orbital motion is taken into account, an oversimplified model is usually employed. In this paper, we treat the binary-lens motion in a realistic way and focus on simulated events that are fitted well by a Paczy\'nski curve. We show that an accurate timing analysis of the residuals (calculated with respect to the best-fitting Paczy\'nski model) is usually sufficient to infer the orbital period of the binary lens. It goes without saying that the independently estimated period may be used to further constrain the orbital parameters obtained by the best-fitting procedure, which often gives degenerate solutions. We also present a preliminary analysis of the event OGLE-2011-BLG-1127 / MOA-2011-BLG-322, which has been recognized to be the result of a binary lens. The period analysis results in a periodicity of \simeq 12 days, which confirms the oscillation of the observed data around the best-fitting model. The estimated periodicity is probably associated with an intrinsic variability of the source star, and therefore there is an opportunity to use this technique to investigate either the intrinsic variability of the source or the effects induced by the binary-lens orbital motion.Comment: In press on MNRAS, 2014. 8 pages, 4 figures. On-line material available on the Journal web-pag

    A Voltage Calibration Chain for Meters Used in Measurements of EV Inductive Power Charging

    Full text link
    The inductive charging of electric vehicles requires specific measurement and calibration systems. In fact, the measurement of power on board involves DC signals, which are superimposed to a significant AC ripple up to or over 150 kHz, depending on the type of charging system. A calibration method that makes use of a phantom power, based on two independent but synchronized circuits, is considered, simulating the charging voltage and current. This paper describes in detail a solution in the realization of the voltage calibration chain, based on the use of a DC voltage calibrator, an injector and a voltage divider.Comment: 2 pages, Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris

    Identification of the Coronal Sources of the Fast Solar Wind

    Get PDF
    The present spectroscopic study of the ultraviolet coronal emission in a polar hole, detected on April 6-9, 1996 with the Ultraviolet Coronagraph Spectrometer aboard the SOHO spacecraft, identifies the inter-plume lanes and background coronal hole regions as the channels where the fast solar wind is preferentially accelerated. In inter-plume lanes, at heliocentric distance 1.7 \rsun, the corona expands at a rate between 105 km/s and 150 km/s, that is, much faster than in plumes where the outflow velocity is between 0 km/s and 65 km/s. The wind velocity is inferred from the Doppler dimming of the O VI λλ\lambda\lambda 1032, 1037 \AA lines, within a range of values, whose lower and upper limit corresponds to anisotropic and isotropic velocity distribution of the oxygen coronal ions, respectively.Comment: 14 pages, 4 figures, 3 tables, Accepted by ApJ Letter

    Anderson transition and multifractals in the spectrum of the Dirac operator of Quantum Chromodynamics at high temperature

    Full text link
    We investigate the Anderson transition found in the spectrum of the Dirac operator of Quantum Chromodynamics (QCD) at high temperature, studying the properties of the critical quark eigenfunctions. Applying multifractal finite-size scaling we determine the critical point and the critical exponent of the transition, finding agreement with previous results, and with available results for the unitary Anderson model. We estimate several multifractal exponents, finding also in this case agreement with a recent determination for the unitary Anderson model. Our results confirm the presence of a true Anderson localization-delocalization transition in the spectrum of the quark Dirac operator at high-temperature, and further support that it belongs to the 3D unitary Anderson model class.Comment: 10 pages, 6 figure

    Phase structure of a generalized Nambu Jona-Lasinio model with Wilson fermions in the mean field or large NN-expansion

    Get PDF
    We analyze the vacuum structure of a generalized lattice Nambu--Jona-Lasinio model with two flavors of Wilson fermions, such that its continuum action is the most general four-fermion action with 'trivial' color interactions, and having a SU(2)VxSU(2)ASU(2)_V x SU(2)_A symmetry in the chiral limit. The phase structure of this model in the space of the two four-fermion couplings shows, in addition to the standard Aoki phases, new phases with !=0 != 0, in close analogy to similar results recently suggested by some of us for lattice QCD with two degenerate Wilson fermions. This result shows how the phase structure of an effective model for low energy QCD cannot be entirely understood from Wilson Chiral Perturbation Theory, based on the standard QCD chiral effective Lagrangian approach.Comment: 24 pages, 3 figures, sent to Nuclear Physics

    A catalogue sample of low mass galaxies observed in X-rays with central candidate black holes

    Full text link
    We present a sample of XX-ray selected candidate black holes in 51 low mass galaxies with z≤0.055z\le 0.055 {and mass up to 101010^{10} M⊙_{\odot}} obtained by cross-correlating the NASA-SLOAN Atlas with the 3XMM catalogue. {We have also searched in the available catalogues for radio counterparts of the black hole candidates and find that 19 of the previously selected sources have also a radio counterpart.} Our results show that about 37%37\% of the galaxies of our sample host { an XX-ray source} (associated to a radio counterpart) spatially coincident with the galaxy center, in agreement with { other recent works}. For these {\it nuclear} sources, the XX-ray/radio fundamental plane relation allows one to estimate the mass of the (central) candidate black holes which results to be in the range 104−2×10810^{4}-2\times10^{8} M⊙_{\odot} (with median value of ≃3×107\simeq 3\times 10^7 M⊙_{\odot} and eight candidates having mass below 10710^{7} M⊙_{\odot}). This result, while suggesting that XX-ray emitting black holes in low-mass galaxies may have had a key role in the evolution of such systems, makes even more urgent to explain how such massive objects formed in galaxies. {Of course, dedicated follow-up observations both in the XX-ray and radio bands, as well as in the optical, are necessary in order to confirm our resultsComment: 15 Pages, 2 Figures, 3 Table
    • …
    corecore