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Abstract 

The recent actuarial literature has shown that mortality patterns and trajectories in 

closely related populations are similar in some respects and that small differences are 

unlikely to increase in the long run. The common feeling is that mortality forecasts for 

individual countries could be improved by taking into account the patterns from a 

larger group. Starting from this consideration, we apply the Three-way Lee-Carter 

model to a group of countries, by extending the bilinear LC model to a three-way 

structure, which incorporates a further component in the decomposition of the log-

mortality rates. From a methodological point of view, there are several issues to deal 

with when focusing on such kind of data. In the presence of a three-way data 

structure, several choices on the pre-treatment of the data could affect the whole 

modelling process. This kind of analysis is useful to assess the source of variation in 

the raw mortality data, before the extraction of the rank-one components by the LC-

model. The proposed procedure is used to extract an ad hoc time mortality trend 

parameter for specific age sub-groups. The results show that the proposed strategy 

leads to a more coherent description of mortality for age specific sub-groups. 

 

Keywords: ANOVA, Human Mortality Database, Lee-Carter Model, Three-way Data 

Analysis, Tucker-3. 

 

 

1. Introduction 

 

The world population has becoming more and more connected due to the 

improvements in transportation, trade and technology. In recent years, the actuarial 

literature has shown an increasing interest in the mortality experience of “connected” 

populations which are characterized by similar socio-economic and environmental 

conditions and by geographical contiguity. If mortality trends for these populations 

are forecasted separately, the trends will diverge in the long run, even when 

observations suggest that they have been converging (Li and Lee (2005)). In some 

contributions, a global convergence in mortality trends has been reported (Wilson 

(2001)). Non-divergent forecasts are referred to as coherent. Therefore, it seems 

inappropriate to make mortality forecasts for individual national populations in 

isolation from one another. Individual forecasts, even when based on similar 

extrapolative procedures, could lead to growing divergence in the long run, in contrast 

to the expected and observed trend toward convergence. The need for considering 

aggregate estimate is supported by the empirical evidence that indicates how 

aggregate series converges toward a stable trajectory in the long run.  

This contribution takes as its starting point, on the one hand, the awareness that life 

tables, and the sets of underlying age specific mortality rates, need to be coherent in 

Manuscript Click here to
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the long run. This result could be achieved by mitigating the differences between each 

single country. In this respect, a unique synthesis for countries would achieve better 

results in removing the local wrinkles.  

On the other hand, robust patterns can be still observed for each country and across 

countries for different Age-groups. This phenomenon drives us to take into account 

the variability in the mortality data structure also with respect to different sources of 

variability, i.e. Age-groups, gender, etc. We believe that it is advisable that synthesis 

across countries should be specific for homogeneous sub-groups in order to attain 

coherent and robust mortality forecasts.  

In this contribution, we aim at improving this aspect by taking into account the 

dissimilarities in the Age-groups while considering coherent synthesis across 

countries. In other words, we would like to highlight that an exploratory data analysis, 

preliminary to modelling data, should be undertaken and could be exploited to address 

different sources of variability in the mortality data. Thus, on the basis of the 

empirical evidence, we propose to consider different sub-models clustered with 

respect to different Age-groups, in order to derive specific mortality trend for 

homogeneous age sub-groups, but still coherent for countries. 

The paper is organized as follows. In Section 2 a brief review of the state of the art is 

introduced. Section 3 briefly recalls the LC models and deepens and interprets the 3-

way LC model. The three-way procedure is discussed through a real case study in 

Section 5. Section 6 concludes. 

 

2. The state of the art 

 

In the last few years, the actuarial literature has focused on models for detecting 

common population trends (for example D’Amato et al. (2012), Hatzopoulos and 

Haberman (2013), Njenga and Sherris (2011), Russolillo et al. (2011), Villegas et al. 

(2017)). These models tend to build on the foundations of the seminal Lee-Carter 

model (Lee and Carter (1992)), which has some limitations when many populations 

need to be modelled simultaneously. Investigating long-run equilibrium relationships 

might provide valuable information about the factors driving changes in mortality, in 

particular across ages and across countries. This aspect has contributed to the growth 

of the interest in studying common cross-country longevity trends. For this reason, we 

have observed a development of country and age-based longevity risk models (Lazar 

and Denuit (2009), Li and Lee (2005), Bergeron-Boucher et al. (2018), etc.). In 2005, 

Li and Lee demonstrated the improvement of the mortality projections for individual 

countries by taking into account the patterns in a larger group. Using the data 

downloaded from the Human Mortality Database, they applied the Lee Carter (LC) 

model to a group of populations allowing each its own age pattern and level of 

mortality, but imposing shared rates of change by age. The so-called Augmented 

Common Factor LC method, they proposed, is aimed at modelling and forecasting 

mortality for a group of populations in a coherent way, taking advantage of 

commonalities in their historical experience and age patterns, while acknowledging 

their individual differences in levels, age patterns, and trends. In other words, Li and 

Lee proposed to model the experience of a single population with reference to another 

coherent population. However, this model requires a great number of parameters, as 

the age pattern and the time-index parameters need to be provided for the common 

factor and for each population’s specific deviation. Several other models followed the 

Li and Lee’s idea; the literature refers to these models as multi-population models or 

coherent mortality models. These studies suggest dependence across multiple 
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 3 

populations and common long run relationships between countries (for instance see 

Lazar and Denuit (2009)).  

More recently, Russolillo et al. (2011) extended the LC model by using a three-way 

analysis and applied the methodology to ten European countries. The idea which 

inspired the authors was that if two or more populations are assumed to have similar 

age by time series patterns of experienced mortality, a multi-way analysis can be 

carried out to describe these patterns. Multi-way techniques are used for analyzing 

data presented in multidimensional data arrays. In this framework, the life table for 

different populations can be organized in a three-way array (each dimension is called 

a “way”, while the entities in each way are the “modes”), where the three indices 

fixed for the three modes refer to time, age and country. The use of a multi-way model 

allowed the authors to explore mortality patterns of different time-by-age matrices 

unfolded according to the different countries. In their analysis, Russolillo et al. (2011) 

found that similar time patterns of mortality should be taken into account. 

Bergeron-Boucher et al. (2018) have extended to a Compositional Data Analysis 

framework the concept of using a three-way model for forecasting, theorized by 

Russolillo et al. (2011). They explored the opportunity of simultaneously modeling 

and forecasting the compositional structure of mortality for different populations. In 

order to test their methodology, the authors carried out a multi-way analysis of the life 

tables of Canadian provinces and territories.  

In this contribution, we start from the consideration that similar time patterns of 

mortality should be taken into account (Russolillo et al. (2011)) and we take a step 

forward by exploring the dataset and running a Hierarchical Cluster analysis to have 

useful insights on how to aggregate the data. Indeed, in presence of disaggregated 

data, we propose to arrange a three-way data array and assess the different sources of 

variability. The aim of this study is firstly to build up a more robust analysis 

producing different sub-models for age homogenous sub-populations. Then, we aim at 

obtaining specific mortality projections for age homogenous sub-populations, 

provided that similar age patterns across populations are also an important 

requirement for using a three-way analysis to forecast mortality.  

Thus, we consider the three-way LC model investigated through a three-way analysis 

of variance with fixed effects, where each cell is given by the log-mortality rate in a 

given year of a specific Age-group for each of the concerned countries. In other 

words, we take into account a three-way array, indexed by the mortality rates for 

years, age and countries. In presence of these kind of data there are several choices on 

data pre-treatment that will affect the whole data modelling. The textbook by 

Kroonenberg (1983), gives a detailed mathematical description of the model and 

discusses advanced issues such as data preparation/scaling and core rotation. The 

Tucker3 model with orthogonal factors is also known as a 3-way PCA (Principal 

Component Analysis). The Tucker3 model allows for extracting different numbers of 

factors in each of the modes. Generally speaking, the advantage of introducing a third 

way in the analysis of a traditional ears per age-class mortality data is effective if we 

can hypothesize that the decomposition along the third way brings information in 

terms of differences across the levels of the third mode (here Countries). At a first 

glance, the average levels of mortality can be compared, but the comparison can be 

extended to different statistics. As we are interested in modelling mortality trends, we 

will put a certain emphasis on the shape of different trends when comparing countries 

and take into account the similarities when divided for age homogeneous sub-

populations . 
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 4 

 

3. Recalling the LC models 

 

In this section, the two and three-way Lee-Carter models are recalled. The two-way 

LC model is defined in Equation (1), by considering the mean centered log-mortality 

rates ijy~  measured over two modes: Years I and Age-groups J: 

 

  JjIiijjijijij yy ,,1;,,1ln~         (1) 

 

where j  represents the j-th average effect of the age independent of time. The other 

two terms are i , a time-varying parameter reflecting the trend in the level of 

mortality, and the element j , an age-specific term that represents how mortality at 

each age varies when the general level of mortality changes. The ij  is the error term.  

The model in (1) can be stated in matrix form highlighting the outer product in the 

Singular Value Decomposition of the matrix �̃�: 

 

 [

�̃�11 … �̃�1𝐽

⋱ �̃�𝑖𝑗 ⋱

�̃�𝐼1 ⋱ �̃�𝐼𝐽

] = √𝜆1 [

𝑣𝑖1

⋮
𝑣𝐼1

] [𝑢11 ⋯ 𝑢1𝐽] + [

𝜀11 ⋯ 𝜀1𝐽

⋮ 𝜀𝑖𝑗 ⋮
𝜀𝐼1 … 𝜀𝐼𝐽

]  (2) 

 

We highlight that Equation (1) and Equation (2) state a low-rank approximate 

decomposition of the mean centered log-mortality rates. The rank-one solution in 

Equation (2), written in terms of the first singular value and the first left and right 

singular vectors, is commonly used. The error term stands for the degree of 

approximation, which should show uninformative and non-systematic patterns/trends 

in the data. Equation (2) is obtained posing 𝜅𝑖 = √𝜆1𝑣𝑖1 for i = 1, … , I and 𝛽𝑗 = 𝑢1𝑗, 

for j = 1, … , J. Otherwise, further components (which are orthogonal and less 

informative) could be considered in the additive model. However, due to the strong 

linear correlations present in the original data, the rank-one approximation usually 

holds. Equation (2), known as the traditional LC model can be directly related to as 

Principal Component Analysis of the centered log-mortality rates. 

Notice that the residual term has to be analyzed for the presence of systematic patterns 

that deviate from randomness. For instance, a sphericity test on the singular values or 

usual empirical rules should be considered (Jackson 1993) to judge the meaningless of 

the disregarded singular values resulting from the data matrix decomposition stated in 

Equation (2). 

 

The three-way extension of the LC model has been provided by Russolillo et al. 

(2011) as an exploratory tool in the framework of the Tucker3 model, which is the 

natural extension of principal component analysis for three-way data. 

For the generic element of the three-way array, we have: 

 

  LlJjIiijlljijlijlijl yy ,,1;,,1;,,1ln~             (3) 

 

In Equation (3), we refer to the index l to vary across L Countries, so that 𝛼𝑗𝑙  is the 

age-by-country average death level independent of time, while j  and i have the 
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 5 

same interpretation as in the two-way LC model (Equation 1). The term l represents 

the term associated to the Country-effect. Specifically, the term 
lji  is specified as 

an outer products conformed to reconstruct the three-way array, while the error term 

represents the gap between actual data and the approximation provided by the 

reconstruction formula because a less than full rank solution is considered. We recall 

that the first component of the three-way singular value decomposition is usually 

enough for this kind of application. The consideration of a second orthogonal 

component is sometimes useful for the sake of graphical representation or in the case 

that the one-rank approximation shows unsatisfactory results in terms of explained 

variance. 

 

A considerable advantage of the Tucker 3 model is that it is possible to choose a 

different number of components for each separate way, as is evident from its 

decomposition formula in matrix form and looking at the role played by the so-called 

core array: 

 

 �̃�𝑖𝑗𝑙 ≈ ∑ ∑ ∑ 𝑔𝑝𝑞𝑟𝑘𝑖𝑝𝑏𝑗𝑞𝑐𝑙𝑟
𝑑3
𝑟=1

𝑑2
𝑞=1

𝑑1
𝑝=1   (4) 

 

In Equation (4), the approximation of the ijl-th element of �̃� is a sum of the possible 

d1d2d3 outer products, each weighted by the corresponding elements of the core array 

G, having dimension (d1, d2, d3). Usually the component matrices are column-wise 

orthogonal. For our purposes, we set d1 = d2 = d3 = 2, so that useful graphical 

representation can be provided. The array representation is stated in the following 

Figure 1: 

 

 

 

 

 

 

 

 

 

 
Figure 1. The Tucker3 model as weighted sum of outer products between the components stored as 

columns in K, B and C. The core array G allows to take into account different subspaces in each way. 

 

The unitary column vectors in K, B and C are then used to obtain the corresponding 

elements of the three-way LC model using the proper weights in G, for instance: 

 

 𝜿𝑖1 = 𝑲𝑖1𝑔111      i = 1, … , I (5)

    

As mentioned before, the advantage of introducing a third way in the analysis of the 

traditional Years per Age-group mortality data is much more clear if we can 

hypothesize that the decomposition along the third way brings information about the 

countries or across some two-way interactions. Now we give some further remarks. 
In this context, we can distinguish three cases:  

i) the different countries show homogeneous mortality patterns;  

G 

I x d1 

L x d3 

d2 

d3 

d1 

J x d2 

= 

I 

J 

L 

�̃� 

I 

J 

L 

E + 

K 

B 
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 6 

ii) the different countries have idiosyncratic patterns; 

iii) there exist subgroups of countries with homogeneous trends within the 

same subgroup while showing different trends among the subgroups. 

 

In the first case, since the mortality data are coherent, it is possible to aggregate the 

different mortality experiences. On the other hand, a factorial decomposition will 

provide a single component that will explain much of the inherent variability. 

In the second case, any data aggregation is awkward, and any solution could lead to 

unreliable results. In this case, a factorial decomposition will give a poor synthesis on 

the first component. 

The third case is more interesting from our point of view. In this case, we may argue 

that a unique synthesis is not reliable, but several syntheses are possible and they 

should be explored in this framework. 

Furthermore, the presence of different patterns should be indicated by a significant 

source of variation across the Countries or Age-groups or by considering interactions 

across Countries and some age-specific element. Indeed, the first step of a mortality 

data investigation should be addressed by exploring the different sources of variation 

and highlighting the significant ones. The basic condition to analyze a mortality data 

structure is the evidence of trend patterns along the Years and observing usual Age-

groups effects. Moreover, in our analysis we deal with the main effect and any two-

way interactions across the three modes. 

The main effects, two-way and the three-way interaction can be easily explored in the 

context of a three-way ANOVA model. However, classical conditions for proper 

statistical inference do not hold in this framework and just the magnitude of the 

effects should be presented. The main effects should provide evidence of large 

differences in the average levels of mortality trends either across Years, or Age-

groups or Countries. 

The Age-group and Countries interaction could allow us to explore the relative 

patterns of mortality rates for each specific Country in any Age-group and, 

conversely, which Age-group is affected by a relative high (low) mortality rate for 

each Country. The Years and Age-group two-way interaction represents the trends of 

the various Age-groups across the Years. Plotting Year versus Age-group gives the 

classical representation before extrapolating the pooled i parameters (see Figure 2 

and the Appendix). 

The Years and Countries interaction shows how the trends vary with respect to each 

specific country, and so we can explore which years have relative high (low) mortality 

rates for any country, and which country shows a relative high (low) impact in each 

specific year. The presence of an important contribution of the three-way interaction 

is at the basis for a meaningful three-mode component analysis. 

 

 

4. The case study 

 

The above methodology is applied to the mortality data of 18 countries for male 

populations. Similar analysis could be provided for female data and for the aggregate 

population too. The third way comprises the following 18 European countries: 

Austria, Sweden, UK, France, Belgium, Netherlands, Switzerland, Portugal, Italy, 

Norway, Spain, Finland, Luxembourg, Ireland, West Germany, East Germany, Czech 

Republic, Denmark. The data were extracted from the Human Mortality Database 

(HMD 2017). The database offers information on death counts, exposure to risk and 
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death rates for national populations (countries or areas); at present, the database 

contains detailed population and mortality data for 39 countries or areas. As regards 

our choice to include data from West and East Germany separately, it can be justified 

because of the differences in the collection of population statistics between the two 

parts of Germany before 1990 resulted from the different definitions used for live 

births and resident population. In the German Democratic Republic (GDR), the term 

“live birth” was used when the new-born exhibited at least two signs of life instead of 

one as in the Federal Republic of Germany (FRG) (for major details we refer the 

interested reader to the section on Birth Count Data, HMD). Also, in the GDR, 

foreigners who had arrived in the country less than six months before were not 

included in the “resident population” whereas in the FRG, all residents were included. 

Moreover, we decide to exclude countries like Estonia, Latvia and Lithuania because 

of the quality of population estimates for 1959-1979 that is lower than in later years. 

From the HMD database there is a recommendation to use these data with caution (for 

details, please see the "Data Quality Issues" section of the Background and 

Documentation file, HMD). A similar motivation guides us to exclude the Greek data. 

There are no data available for countries as Romania or ex-Yugoslavia.  

 

As regards the time range, we use data from 1960 until 2006. It is well known that in 

this period there are some troubles: to avoid problems with zero death counts, we used 

mortality rates (mx,t) by 5-year Age-groups and 1-year time-period. More specifically 

data were downloaded in age groups ranging from 0, 1-4, 5-9, 10-14, up to 95-99. To 

sum up, the data array is constituted by 18 countries, 21 age-groups and 47 years.  

The general data patterns are quite similar for all 18 countries. This is shown in Figure 

2 for the UK dataset, as a prototype. A noticeable feature of the pattern is the presence 

of different mortality levels across Age-groups. Specifically, we highlight the atypical 

mortality levels for the first year of life, specifically age “0”. 
  

 

 

 
 

Figure 2. Log-mortality data of the United Kingdom across 47 years and 21 age-groups.  

The age 0 has a mortality level similar to the intermediate age-groups. 

 

From Figure 2, it appears that the first Age-group “0” experiences a peculiar pattern 

which is not consistent with the contiguous Age-groups, i.e. 1-4, 5-9, etc. Conversely, 
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 8 

it seems to be coherent with mortality levels of middle Age-groups (50-54, 55-59, 

etc.). To deal with a more homogenous data structure, we decide to remove age “0” 

from the dataset. Thus, the three-way data array becomes of 47 Years, 20 Age-groups 

and 18 Countries.  

In the Appendix, we display the 18 mortality data patterns, where Countries are in 

alphabetical order. Here, it should be pointed out that Countries show quite 

homogeneous mortality patterns and we may look for a consistent synthesis. 

In order to assess the source of variability in the three modes, we perform a 3-way 

Analysis of Variance (ANOVA) with fixed effects. This kind of analysis allows us to 

determine the most important sources of variability in the three-way raw data 

structure given, in our application, by the centered log mortality rates.  

 

The results are shown in Table 1, where it is evident that the main effect of Age-group 

is the one with the larger impact, accounting for the 98% of the total variability. 
 

Total ssq =  90958.943    % 
SS_Years    =    804.657  (0.88) 
SS_Age      =  89164.565 (98.03) 
SS_Country  =    251.415  (0.28) 
SS_YxA      =    329.713  (0.36) 
SS_YxC      =     43.759  (0.05) 
SS_AxC      =    191.889  (0.21) 
SS_YxAxC    =    172.944  (0.19) 

 

Table 1. ANOVA Results 
 

Coherently with our idea to explore the main source of variability, we further explore 

the dataset by running a Hierarchical Cluster analysis (Ward’s Method), which should 

give useful insights on how to separate data along Age-groups. To this aim, firstly the 

three-way array is unfolded producing a two-way array of size (Years x Countries) x 

Age-groups, that is 846 x 20. Then, we compute a distance matrix holding the (20 x 

20) Euclidean distances between any pairs of Age-groups. Figure 3 displays the 

resulting dendrogram, where four classes of homogeneous Age-groups can be 

distinguished: Infant (age groups from 1-4 to 10-14 years old), Young (Age-groups 

from 15-19 to 45-49), Adult (from 50-54 to 75-79) and Old (from 80-84 to 95-99). 
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Figure 3. Homogeneous Age-groups according to the general level of mortality across Countries 

 

In other words, it looks like in the raw data there were four possible different hidden 

sub-models and these sub-populations have been identified by a “data driven” 

approach.  

Since we know that similar age patterns across populations are also an important 

requirement for using three-way analysis to forecast mortality (Boucher et al (2018)), 

we consider worthwhile to pursue the analysis by examining the four sub-groups with 

similar age patterns in order to obtain coherent mortality forecasting for those age 

groups. 

Thus, we split the dataset into four homogeneous sub-groups labelled as: Infant, 

Young, Old and Adult Age-groups. We run the Tucker3 analysis, for each of the four 

sub-groups and extract the first components corresponding to the 𝜅𝑡,𝑠 where s = 

{Infant: [1-14]; Young: [1549]; Adult: [5079]; Old: [8099]}, plotted in Figure 4.  

The goodness of fit results from the four analyses are given in Table 2 and show 

reliable results for the chosen number of factors. The choices of suitable number of 

extracted factors is addressed by internal optimal criterion provided by most of the 

three-way software and therefore it is not discussed here. 

 

 Infant Young Adult Old 

Extracted factors 2  2  2 2  2  2 2  2  2 2  2  2 

SSE 77.578 109,662 14.545 22.875 

R-Squared 0.9087 0,7885 0.9433 0.8650 
Generalized Cross 
Validation (prediction 

error) 

0.0341 0.0194 0.0047 0.0048 

 

Table 2 – Summary of Goodness of Fit Information for the four estimated Tucker3 models. 
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Figure 4 clearly shows the peculiar patterns in the four sub-groups. Specifically, we 

notice a rapid decreasing of mortality level for Infant Age-group, along with the 

considered years range. In latest years, the Infant [0-14] and the Young Age-group 

[15-49] seem to converge together towards a lower mortality level. The Adult [50-79] 

and the Old [80-99] Age-groups seem stay close along all the years and they converge 

together to a higher mortality level. In other words, the Adult [50-79] and the Old [80-

99] Age-groups seem stay close along all the time period, then they present a 

bifurcation around the year 2002 and after that, Adult and Old converge together to a 

higher mortality level with respect to Infant and Young people. 

 

 
Figure 4. The four t  for the respective age-groups, their projections 5 years ahead and confidence 

regions (alfa=0.05). 

 

These divergences emerging from the three-way analysis applied to each sub-group, 

coming from the intensity of the general mortality process experienced by each age 

group, would be generally disregarded if the different sources of variability would be 

not taken into account. This appears to us to be an important result enabling us to 

obtain a more reliable and coherent time series t , which allows to project mortality 

rates (and hence an applicable life table) for each specific age group.  

To complete the analysis, we derived five-years ahead forecasts and the 

corresponding 95% confidence regions (see Figure 4). Definitively, we can highlight 

that Infant and Young show overlapping regions, as well as Adult and Old age groups 

do. However, Infant and Young trends are well separated from the Adult and Old ones.  

We have seen that the numerical analysis seems to confirm the Age-groups clustering 

depicted in the Dendrogram in Figure 3. In order to forecast the deriving time series, 

we estimate four sub-models and highlighting that they underlie different stochastic 

processes. The estimated ARIMA models for the four trends showed in Figure 4 are 

depicted in Table 3. 
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 Infant Young Adult Old 

ARIMA specification 1,1,0 0,2,1 0,2,1 0,2,1 

AR: ϕ -0.5186 

(0.1309) 

   

Drift: d -0.2696 

(0.0249) 

   

MA: θ  -0.7865 

(0.0944) 

-0.8261 

(0.0605) 

-0.9338  

(0.0572) 
Sigma2;  logLikelihood 0.067; -2.42 0.050; 3.5 0.014; 32.32 0.064; -3.19 
AIC;  BIC   10.83; 16.32 -2.99; 0.62 -60.64; -57.02 10.38; 13.99 

Tab. 3 – ARIMA specifications and statistical modelling of the four age-groups. 

 

The results in Table 3 display the ARIMA model specifications, the estimated 

parameters and model fitting statistics. The first thing to notice is that the Infant Age-

group has an idiosyncratic model specification in the class of AR model with drift; 

this should be due to the relatively rapid decrease of the mortality levels in the 

considered time period for the Infant Age-group. The other three Age-groups, despite 

showing a convenient representation in the same class of stochastic process (MA 

model with a quadratic integration to obtain suitable stationarity), show that the MA 

coefficient θ tend to |1| when age increases, ranging from -0.7865 (Young) to -0.9338 

(Old). From a statistical point of view, this implies that when the age increases, 

modeling mortality data for projection purposes is meaningless in this class of models. 

 

 

5. Conclusions 

 

In Section 4, we consider 18 countries by 5-year Age-groups, for the time period 

1960–2006. We construct the males Three-way data array that initially consists of 18 

Countries, 21 Age groups and 47 Years. After noticing atypical mortality levels for 

the first age-group “0”, we remove this age from the data set in order to obtain a more 

homogeneous data structure. Coherently with our main aim, we explore the main 

sources of variability in the three-way data structure given by the centered log 

mortality rates.  

The application of the Tucker3 model to the case study provides an interesting 

visualization of the relationships between the components of the mortality data along 

years and Age-groups. Moreover, the analysis allows us to discuss the coherence of a 

composite trend across different countries and their relative homogeneity patterns.  

Following a “data driven” approach, we find out that in the raw data four possible 

different sub-models are hidden. After identifying these sub-populations, we extract 

coherent mortality forecast for those age homogeneous sub-groups.  

The proposed procedure presents many potential advantages. It allows to empirically 

verify the heterogeneity in the raw data structure and to analyze, with a three-way 

ANOVA, the most important sources of heterogeneity within sup-populations. In 

addition, combining exploratory factorial techniques and clustering methods, we are 

able to apply the three-way model and so running specific analysis with respect to 

each coherent class of Age-groups. This procedure has the advantage of providing 

synthetic t  for all the considered countries, while being specific for a particular age 

homogeneous sub-groups. Investigates with various countries, show that the mortality 
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dynamics are better described when the mortality experience of connected population 

is considered than modeling them independently.  

In this paper we only deal with male data, however, as a further investigation, we plan 

to introduce a fourth way in the analysis, by assessing the gender effect. This 4-way 

analysis could provide useful insight in comparing forecast along Years, across Age-

groups, Countries, and Gender.   
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Appendix. The 18 log-mortality patterns for every countries. 

Axes show Years and Age-groups. The vertical axis is the log-mortality rate. 
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