15 research outputs found

    GlacierMIP – A model intercomparison of global-scale glacier mass-balance models and projections

    Get PDF
    Global-scale 21st-century glacier mass change projections from six published global glacier models are systematically compared as part of the Glacier Model Intercomparison Project. In total 214 projections of annual glacier mass and area forced by 25 General Circulation Models (GCMs) and four Representative Concentration Pathways (RCP) emission scenarios and aggregated into 19 glacier regions are considered. Global mass loss of all glaciers (outside the Antarctic and Greenland ice sheets) by 2100 relative to 2015 averaged over all model runs varies from 18 ± 7% (RCP2.6) to 36 ± 11% (RCP8.5) corresponding to 94 ± 25 and 200 ± 44 mm sea-level equivalent (SLE), respectively. Regional relative mass changes by 2100 correlate linearly with relative area changes. For RCP8.5 three models project global rates of mass loss (multi-GCM means) of >3 mm SLE per year towards the end of the century. Projections vary considerably between regions, and also among the glacier models. Global glacier mass changes per degree global air temperature rise tend to increase with more pronounced warming indicating that mass-balance sensitivities to temperature change are not constant. Differences in glacier mass projections among the models are attributed to differences in model physics, calibration and downscaling procedures, initial ice volumes and varying ensembles of forcing GCMs

    Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments

    Get PDF
    Clouds are an important component of the climate system, yet our understanding of how they directly and indirectly affect glacier melt in different climates is incomplete. Here we analyse high-quality datasets from 16 mountain glaciers in diverse climates around the globe to better understand how relationships between clouds and near-surface meteorology, radiation and surface energy balance vary. The seasonal cycle of cloud frequency varies markedly between mountain glacier sites. During the main melt season at each site, an increase in cloud cover is associated with increased vapour pressure and relative humidity, but relationships to wind speed are site specific. At colder sites (average near-surface air temperature in the melt season <0gg C), air temperature generally increases with increasing cloudiness, while for warmer sites (average near-surface air temperature in the melt season ≫0gg C), air temperature decreases with increasing cloudiness. At all sites, surface melt is more frequent in cloudy compared to clear-sky conditions. The proportion of melt from temperature-dependent energy fluxes (incoming longwave radiation, turbulent sensible heat and latent heat) also universally increases in cloudy conditions. However, cloud cover does not affect daily total melt in a universal way, with some sites showing increased melt energy during cloudy conditions and others decreased melt energy. The complex association of clouds with melt energy is not amenable to simple relationships due to many interacting physical processes (direct radiative forcing; surface albedo; and co-variance with temperature, humidity and wind) but is most closely related to the effect of clouds on net radiation. These results motivate the use of physics-based surface energy balance models for representing glacier-climate relationships in regional- and global-scale assessments of glacier response to climate change

    Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments

    Get PDF
    Clouds are an important component of the climate system, yet our understanding of how they directly and indirectly affect glacier melt in different climates is incomplete. Here we analyse high-quality datasets from 16 mountain glaciers in diverse climates around the globe to better understand how relationships between clouds and near-surface meteorology, radiation and surface energy balance vary. The seasonal cycle of cloud frequency varies markedly between mountain glacier sites. During the main melt season at each site, an increase in cloud cover is associated with increased vapour pressure and relative humidity, but relationships to wind speed are site specific. At colder sites (average near-surface air temperature in the melt season <0° C), air temperature generally increases with increasing cloudiness, while for warmer sites (average near-surface air temperature in the melt season ≫0° C), air temperature decreases with increasing cloudiness. At all sites, surface melt is more frequent in cloudy compared to clear-sky conditions. The proportion of melt from temperature-dependent energy fluxes (incoming longwave radiation, turbulent sensible heat and latent heat) also universally increases in cloudy conditions. However, cloud cover does not affect daily total melt in a universal way, with some sites showing increased melt energy during cloudy conditions and others decreased melt energy. The complex association of clouds with melt energy is not amenable to simple relationships due to many interacting physical processes (direct radiative forcing; surface albedo; and co-variance with temperature, humidity and wind) but is most closely related to the effect of clouds on net radiation. These results motivate the use of physics-based surface energy balance models for representing glacier-climate relationships in regional- and global-scale assessments of glacier response to climate change

    Simulating the evolution of Hardangerjøkulen ice cap in southern Norway since the mid-Holocene and its sensitivity to climate change

    No full text
    Understanding of long-term dynamics of glaciers and ice caps is vital to assess their recent and future changes, yet few long-term reconstructions using ice flow models exist. Here we present simulations of the maritime Hardangerjøkulen ice cap in Norway from the mid-Holocene through the Little Ice Age (LIA) to the present day, using a numerical ice flow model combined with glacier and climate reconstructions. In our simulation, under a linear climate forcing, we find that Hardangerjøkulen grows from ice-free conditions in the mid-Holocene to its maximum extent during the LIA in a nonlinear, spatially asynchronous fashion. During its fastest stage of growth (2300–1300 BP), the ice cap triples its volume in less than 1000 years. The modeled ice cap extent and outlet glacier length changes from the LIA until today agree well with available observations. Volume and area for Hardangerjøkulen and several of its outlet glaciers vary out-of-phase for several centuries during the Holocene. This volume–area disequilibrium varies in time and from one outlet glacier to the next, illustrating that linear relations between ice extent, volume and glacier proxy records, as generally used in paleoclimatic reconstructions, have only limited validity. We also show that the present-day ice cap is highly sensitive to surface mass balance changes and that the effect of the ice cap hypsometry on the mass balance–altitude feedback is essential to this sensitivity. A mass balance shift by +0.5 m w.e. relative to the mass balance from the last decades almost doubles ice volume, while a decrease of 0.2 m w.e. or more induces a strong mass balance–altitude feedback and makes Hardangerjøkulen disappear entirely. Furthermore, once disappeared, an additional +0.1 m w.e. relative to the present mass balance is needed to regrow the ice cap to its present-day extent. We expect that other ice caps with comparable geometry in, for example, Norway, Iceland, Patagonia and peripheral Greenland may behave similarly, making them particularly vulnerable to climate change

    Glaciological investigations in Norway 2011-2015

    No full text
    Results of glaciological investigations performed at Norwegian glaciers in 2011, 2012, 2013, 2014 and 2015 are presented in this report. The main part concerns mass balance investigations. Results from investigations of glacier length changes are discussed in a separate chapter

    Glaciological investigations in Norway in 2010

    No full text
    Results of glaciological investigations performed at Norwegian glaciers in 2010 are presented in this report. The main part concerns mass balance investigations. Results from investigations of glacier length changes are discussed in a separate chapter

    Glaciological investigations in Norway in 2009

    No full text
    Results of glaciological investigations performed at Norwegian glaciers in 2008 are presented in this report. The main part concerns mass balance investigations. Results from investigations of glacier length changes are discussed in a separate chapte

    Surface energy balance in the ablation zone of Langfjordjøkelen, an arctic, maritime glacier in northern Norway

    No full text
    Glaciers in northern and southern Norway are subject to different daily and seasonal cycles of incoming solar radiation, which is presumably reflected in the importance of net solar radiation in their surface energy balance. We present a 3 year continuous record from an automatic weather station in the ablation zone of the ice cap Langfjordjøkelen, one of the most northerly glaciers of mainland Norway. Despite its location at 708 N, Langfjordjøkelen was found to have a maritime climate, with an annual mean air temperature of –1.08C, frequent cloud cover and end-of-winter snow depths over 3m in all three years. The main melt season was May–October, but occasional melt events occurred on warm, cloudy winter days. Net solar and longwave radiation together accounted for 58% of the melt energy, with a positive contribution by net longwave radiation (7%). The sensible and latent heat fluxes supplied the remainder of the melt energy. Cloud optical thickness over Langfjordjøkelen was larger than on two glaciers in southern Norway, especially in the summer months. This resulted in a smaller contribution of net solar radiation to surface melt on Langfjordjøkelen; the effect of the higher latitude on net solar radiation was found to be small

    Glaciological investigations in Norway in 2007

    No full text
    Results of glaciological investigations performed at Norwegian glaciers in 2007 are presented in this report. The main part concerns mass balance investigations. Results from investigations of glacier monitoring are discussed in a separate chapter

    Glaciological investigations in Norway in 2008

    No full text
    Results of glaciological investigations performed at Norwegian glaciers in 2008 are presented in this report. The main part concerns mass balance investigations. Results from investigations of glacier length changes are discussed in a separate chapter
    corecore