834 research outputs found

    Solidification of liquid metal drops during impact

    Get PDF
    Hot liquid metal drops impacting onto a cold substrate solidify during their subsequent spreading. Here we experimentally study the influence of solidification on the outcome of an impact event. Liquid tin drops are impacted onto sapphire substrates of varying temperature. The impact is visualised both from the side and from below, which provides a unique view on the solidification process. During spreading an intriguing pattern of radial ligaments rapidly solidifies from the centre of the drop. This pattern determines the late-time morphology of the splat. A quantitative analysis of the drop spreading and ligament formation is supported by scaling arguments. Finally, a phase diagram for drop bouncing, deposition and splashing as a function of substrate temperature and impact velocity is provided

    IRAS 19135+3937: An SRd variable as interacting binary surrounded by a circumbinary disc

    Full text link
    Semi-regular (SR) variables are not a homogeneous class and their variability is often explained due to pulsations and/or binarity. This study focuses on IRAS 19135+3937, an SRd variable with an infra-red excess indicative of a dusty disc. A time-series of high-resolution spectra, UBV photometry as well as a very accurate light curve obtained by the Kepler satellite, allowed us to study the object in unprecedented detail. We discovered it to be a binary with a period of 127 days. The primary has a low surface gravity and an atmosphere depleted in refractory elements. This combination of properties unambiguously places IRAS 19135+3937 in the subclass of post-Asymptotic Giant Branch stars with dusty discs. We show that the light variations in this object can not be due to pulsations, but are likely caused by the obscuration of the primary by the circumbinary disc during orbital motion. Furthermore, we argue that the double-peaked Fe emission lines provide evidence for the existence of a gaseous circumbinary Keplerian disc inside the dusty disc. A secondary set of absorption lines has been detected near light minimum, which we attribute to the reflected spectrum of the primary on the disc wall, which segregates due to the different Doppler shift. This corroborates the recent finding that reflection in the optical by this type of discs is very efficient. The system also shows a variable Halpha profile indicating a collimated outflow originating around the companion. IRAS 19135+3937 thus encompasses all the major emergent trends about evolved disc systems, that will eventually help to place these objects in the evolutionary context.Comment: Accepted to MNRA

    Multi‐object detector YOLOv4‐tiny enables high‐throughput combinatorial and spatially‐resolved sorting of cells in microdroplets

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record. Data Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.The encapsulation of cells together with micro-objects in monodispersed water-in-oil microdroplets offers a powerful means to perform quantitative biological studies within large cell populations. In such applications, accurate object detection is crucial to ensure control over the content for every compartment. In particular, the ability to rapidly count and localize objects is key to future applications in single-cell -omics, cellular aggregation, and cell-to-cell interactions. In this paper, the authors combine the Deep Learning object detector YOLOv4-tiny with microfluidic Image-Activated Droplet Sorting (DL-IADS), to perform flexible, label-free classification, counting, and localization of multiple micro-objects simultaneously and at high-throughput. They trained YOLOv4-tiny to detect SH-SY5Y cells, polyacrylamide beads, and cellular aggregates in a single model, with a precision of 92% for cells, 98% for beads, and 81% for aggregates. They exploit this accuracy and counting ability to implement a closed-loop feedback that enables controlled loading of microbeads via the automated adjustment of flow rates. They subsequently demonstrate the combinatorial sorting of co-encapsulated single cells and single beads based on real-time classification at up to 111 Hz, with enrichment factors of up to 145. Finally, they demonstrate spatially-resolved sorts by evaluating cell-to-cell distances in real-time to isolate cell doublets with high purity.Biotechnology and Biological Sciences Research CouncilEuropean Union’s Horizon 202

    TLR3, TLR4 and TLRs7-9 Induced Interferons Are Not Impaired in Airway and Blood Cells in Well Controlled Asthma

    Get PDF
    Defective Rhinovirus induced interferon-β and interferon-λ production has been reported in bronchial epithelial cells from asthmatics but the mechanisms of defective interferon induction in asthma are unknown. Virus infection can induce interferon through Toll like Receptors (TLR)3, TLR7 and TLR8. The role of these TLRs in interferon induction in asthma is unclear. This objective of this study was to measure the type I and III interferon response to TLR in bronchial epithelial cells and peripheral blood cells from atopic asthmatics and non-atopic non-asthmatics. Bronchial epithelial cells and peripheral blood mononuclear cells from atopic asthmatic and non-atopic non-asthmatic subjects were stimulated with agonists to TLR3, TLR4 & TLRs7-9 and type I and III interferon and pro-inflammatory cytokine, interleukin(IL)-6 and IL-8, responses assessed. mRNA expression was analysed by qPCR. Interferon proteins were analysed by ELISA. Pro-inflammatory cytokines were induced by each TLR ligand in both cell types. Ligands to TLR3 and TLR7/8, but not other TLRs, induced interferon-β and interferon-λ in bronchial epithelial cells. The ligand to TLR7/8, but not those to other TLRs, induced only type I interferons in peripheral blood mononuclear cells. No difference was observed in TLR induced interferon or pro-inflammatory cytokine production between asthmatic and non-asthmatic subjects from either cell type. TLR3 and TLR7/8,, stimulation induced interferon in bronchial epithelial cells and peripheral blood mononuclear cells. Interferon induction to TLR agonists was not observed to be different in asthmatics and non-asthmatics

    Topological defects and shape of aromatic self-assembled vesicles

    Get PDF
    We show that the stacking of flat aromatic molecules on a curved surface results in topological defects. We consider, as an example, spherical vesicles, self-assembled from molecules with 5- and 6-thiophene cores. We predict that the symmetry of the molecules influences the number of topological defects and the resulting equilibrium shape.Comment: accepted as a Letter in the J. Phys. Chem.

    X-Ray Structure and In Vitro Anti-Tumoural Activity of the Dimeric Bis[(2-Phenyl-1,2-Dicarba-Closo-Dodecaborane-1-Carboxylato)-Di-n-Butyltin] Oxide

    Get PDF
    X-ray diffraction studies reveal the structure of {[(2-C6H5-1,2-C2B10H10-1-COO)Bu2Sn]2O}2, 1, to conform to the common motif found for {[(R′COO)R2Sn]2O}2 compounds. The dimer features a central Bu2Sn2O2 unit (two-fold symmetry) with the two Bu2Sn groups being linked via bridging oxygen atoms, each of which also carries an exocyclic Bu2Sn moiety. The two pairs of exo- and endo-cyclic tin atoms are each linked via an almost symmetrically bridging carboxylate ligand and the two remaining ligands coordinate an exocyclic tin atom only, in the monodentate mode. The in vitro anti-tumour activity of 1, determined against a variety of cell lines, is compared with those of the corresponding 2-methylcarboranylacetate, derivative 2, and with clinically used compounds

    Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett-Crane model

    Full text link
    A dual formulation of group field theories, obtained by a Fourier transform mapping functions on a group to functions on its Lie algebra, has been proposed recently. In the case of the Ooguri model for SO(4) BF theory, the variables of the dual field variables are thus so(4) bivectors, which have a direct interpretation as the discrete B variables. Here we study a modification of the model by means of a constraint operator implementing the simplicity of the bivectors, in such a way that projected fields describe metric tetrahedra. This involves a extension of the usual GFT framework, where boundary operators are labelled by projected spin network states. By construction, the Feynman amplitudes are simplicial path integrals for constrained BF theory. We show that the spin foam formulation of these amplitudes corresponds to a variant of the Barrett-Crane model for quantum gravity. We then re-examin the arguments against the Barrett-Crane model(s), in light of our construction.Comment: revtex, 24 page
    corecore