7 research outputs found

    Malaria and gravidity interact to modify maternal haemoglobin concentrations during pregnancy

    No full text
    Abstract Background Primigravidity is one of the main risk factors for both malaria and anaemia. Since the implementation of intermittent preventive treatment (IPTp) in sub-Saharan Africa, the relationship between anaemia and gravidity and its evolution during pregnancy has been little explored. This study aimed to evaluate the impact of gravidity on the variation of haemoglobin during pregnancy according to the timing of gestation. Methods Data from three studies carried out in nearby areas in south Benin (Ouidah, Comé, Allada) between 2005 and 2012 were analysed. At inclusion (first antenatal visit, ANV1) women’s age, area of residence, schooling, gravidity, gestational age, weight and height were recorded. Thick blood smears were performed on ANV1, second visit (ANV2) and at delivery. In Allada, women’s serum ferritin and CRP concentrations were also assessed. The impact of gravidity on maternal haemoglobin (Hb) was analysed using a logistic or linear regression depending on the outcome. The statistical significance was set to P Results In total, data from 3,591 pregnant women were analysed. Both univariate and multivariate analyses showed a constant association between Hb concentrations and gravidity in the three periods of Hb assessment (ANV1, ANV2 and delivery). Mean Hb concentration was significantly lower in primigravidae than in multigravidae at ANV1 (mean difference = -2.4 g/L, CI 95%: [-3.4, -1.4], P Conclusion In a context of IPTp, Hb levels improved progressively throughout pregnancy in primigravidae, likely as a result of reduction in malaria infection. In multigravidae, the improvement was less perceptible and anaemia was mainly due to iron deficiency.</p

    The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution

    No full text
    The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs

    The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution

    No full text
    corecore