117 research outputs found

    Model Reduction for Large-Scale Systems with High Dimensional Parametric Input Space

    Get PDF
    A model-constrained adaptive sampling methodology is proposed for reduction of large-scale systems with high-dimensional parametric input spaces. Our model reduction method uses a reduced basis approach, which requires the computation of high-fidelity solutions at a number of sample points throughout the parametric input space. A key challenge that must be addressed in the optimization, control, and probabilistic settings is the need for the reduced models to capture variation over this parametric input space, which, for many applications, will be of high dimension. We pose the task of determining appropriate sample points as a PDE-constrained optimization problem, which is implemented using an efficient adaptive algorithm that scales well to systems with a large number of parameters. The methodology is demonstrated for examples with parametric input spaces of dimension 11 and 21, which describe thermal analysis and design of a heat conduction fin, and compared with statistically-based sampling methods. For this example, the model-constrained adaptive sampling leads to reduced models that, for a given basis size, have error several orders of magnitude smaller than that obtained using the other methods

    Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems

    Get PDF
    We present a model reduction approach to the solution of large-scale statistical inverse problems in a Bayesian inference setting. A key to the model reduction is an efficient representation of the non-linear terms in the reduced model. To achieve this, we present a formulation that employs masked projection of the discrete equations; that is, we compute an approximation of the non-linear term using a select subset of interpolation points. Further, through this formulation we show similarities among the existing techniques of gappy proper orthogonal decomposition, missing point estimation, and empirical interpolation via coefficient-function approximation. The resulting model reduction methodology is applied to a highly non-linear combustion problem governed by an advection–diffusion-reaction partial differential equation (PDE). Our reduced model is used as a surrogate for a finite element discretization of the non-linear PDE within the Markov chain Monte Carlo sampling employed by the Bayesian inference approach. In two spatial dimensions, we show that this approach yields accurate results while reducing the computational cost by several orders of magnitude. For the full three-dimensional problem, a forward solve using a reduced model that has high fidelity over the input parameter space is more than two million times faster than the full-order finite element model, making tractable the solution of the statistical inverse problem that would otherwise require many years of CPU time.MIT-Singapore Alliance. Computational Engineering ProgrammeUnited States. Air Force Office of Scientific Research (Contract Nos. FA9550-06-0271)National Science Foundation (U.S.) (Grant No. CNS-0540186)National Science Foundation (U.S.) (Grant No. CNS-0540372)Caja Madrid Foundation (Graduate Fellowship

    Dynamic Data Driven Methods for Self-aware Aerospace Vehicles

    Get PDF
    A self-aware aerospace vehicle can dynamically adapt the way it performs missions by gathering information about itself and its surroundings and responding intelligently. Achieving this DDDAS paradigm enables a revolutionary new generation of self-aware aerospace vehicles that can perform missions that are impossible using current design, flight, and mission planning paradigms. To make self-aware aerospace vehicles a reality, fundamentally new algorithms are needed that drive decision-making through dynamic response to uncertain data, while incorporating information from multiple modeling sources and multiple sensor fidelities.In this work, the specific challenge of a vehicle that can dynamically and autonomously sense, plan, and act is considered. The challenge is to achieve each of these tasks in real time executing online models and exploiting dynamic data streams–while also accounting for uncertainty. We employ a multifidelity approach to inference, prediction and planning an approach that incorporates information from multiple modeling sources, multiple sensor data sources, and multiple fidelities

    On the Relationships between Decision Management and Performance Measurement

    Get PDF
    Decision management is of utmost importance for the achievement of strategic and operational goals in any organisational context. Therefore, decisions should be considered as first-class citizens that need to be modelled, analysed, monitored to track their performance, and redesigned if necessary. Up to now, existing literature that studies decisions in the context of business processes has focused on the analysis of the definition of decisions themselves, in terms of accuracy, certainty, consistency, covering and correctness. However, to the best of our knowledge, no prior work exists that analyses the relationship between decisions and performance measurement. This paper identifies and analyses this relationship from three different perspectives, namely: the impact of decisions on process performance, the performance measurement of decisions, and the use of performance indicators in the definition of decisions. Furthermore, we also introduce solutions for the representation of these relationships based, amongst others, on the DMN standard.Ministerio de EconomĂ­a y Competitividad BELI (TIN2015-70560-R)Junta de AndalucĂ­a P12-TIC-1867Junta de AndalucĂ­a P10-TIC-590

    Transcriptomic alterations in the heart of non-obese type 2 diabetic Goto-Kakizaki rats

    Get PDF
    BACKGROUND: There is a spectacular rise in the global prevalence of type 2 diabetes mellitus (T2DM) due to the worldwide obesity epidemic. However, a significant proportion of T2DM patients are non-obese and they also have an increased risk of cardiovascular diseases. As the Goto-Kakizaki (GK) rat is a well-known model of non-obese T2DM, the goal of this study was to investigate the effect of non-obese T2DM on cardiac alterations of the transcriptome in GK rats. METHODS: Fasting blood glucose, serum insulin and cholesterol levels were measured at 7, 11, and 15 weeks of age in male GK and control rats. Oral glucose tolerance test and pancreatic insulin level measurements were performed at 11 weeks of age. At week 15, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41,012 genes, and then expression of selected genes was confirmed by qRT-PCR. Gene ontology and protein-protein network analyses were performed to demonstrate potentially characteristic gene alterations and key genes in non-obese T2DM. RESULTS: Fasting blood glucose, serum insulin and cholesterol levels were significantly increased, glucose tolerance and insulin sensitivity were significantly impaired in GK rats as compared to controls. In hearts of GK rats, 204 genes showed significant up-regulation and 303 genes showed down-regulation as compared to controls according to microarray analysis. Genes with significantly altered expression in the heart due to non-obese T2DM includes functional clusters of metabolism (e.g. Cyp2e1, Akr1b10), signal transduction (e.g. Dpp4, Stat3), receptors and ion channels (e.g. Sln, Chrng), membrane and structural proteins (e.g. Tnni1, Mylk2, Col8a1, Adam33), cell growth and differentiation (e.g. Gpc3, Jund), immune response (e.g. C3, C4a), and others (e.g. Lrp8, Msln, Klkc1, Epn3). Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by non-obese T2DM. Protein-protein interaction analysis demonstrated that Stat is a potential key gene influenced by non-obese T2DM. CONCLUSIONS: Non-obese T2DM alters cardiac gene expression profile. The altered genes may be involved in the development of cardiac pathologies and could be potential therapeutic targets in non-obese T2DM

    Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5

    Get PDF
    We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes

    ESM-SnowMIP: Assessing snow models and quantifying snow-related climate feedbacks

    Get PDF
    This paper describes ESM-SnowMIP, an international coordinated modelling effort to evaluate current snow schemes, including snow schemes that are included in Earth system models, in a wide variety of settings against local and global observations. The project aims to identify crucial processes and characteristics that need to be improved in snow models in the context of local- and global-scale modelling. A further objective of ESM-SnowMIP is to better quantify snow-related feedbacks in the Earth system. Although it is not part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6), ESM-SnowMIP is tightly linked to the CMIP6-endorsed Land Surface, Snow and Soil Moisture Model Intercomparison (LS3MIP)
    • 

    corecore