611 research outputs found
Development and evaluation of automatic landing control laws for power lift STOL aircraft
A series of investigations were conducted to generate and verify through ground bases simulation and flight research a data base to aid in the design and certification of advanced propulsive lift short takeoff and landing aircraft. Problems impacting the design of powered lift short haul aircraft that are to be landed automatically on STOL runways in adverse weather were examined. An understanding of the problems was gained by a limited coverage of important elements that are normally included in the certification process of a CAT 3 automatic landing system
Development and evaluation of automatic landing control laws for light wing loading STOL aircraft
Automatic flare and decrab control laws were developed for NASA's experimental Twin Otter. This light wing loading STOL aircraft was equipped with direct lift control (DLC) wing spoilers to enhance flight path control. Automatic landing control laws that made use of the spoilers were developed, evaluated in a simulation and the results compared with these obtained for configurations that did not use DLC. The spoilers produced a significant improvement in performance. A simulation that could be operated faster than real time in order to provide statistical landing data for a large number of landings over a wide spectrum of disturbances in a short time was constructed and used in the evaluation and refinement of control law configurations. A longitudinal control law that had been previously developed and evaluated in flight was also simulated and its performance compared with that of the control laws developed. Runway alignment control laws were also defined, evaluated, and refined to result in a final recommended configuration. Good landing performance, compatible with Category 3 operation into STOL runways, was obtained
Recessive osteogenesis imperfecta caused by LEPRE1 mutations: clinical documentation and identification of the splice form responsible for prolyl 3-hydroxylation
Abstract: Background: Recessive forms of osteogenesis imperfecta (OI) may be caused by mutations in LEPRE1, encoding prolyl 3-hydroxylase-1 (P3H1) or in CRTAP, encoding cartilage associated protein. These proteins constitute together with cyclophilin B (CyPB) the prolyl 3-hydroxylation complex that hydroxylates the Pro986 residue in both the type I and type II collagen alpha 1-chains.
Methods: We screened LEPRE1, CRTAP and PPIB (encoding CyPB) in a European/Middle Eastern cohort of 20 lethal/severe OI patients without a type I collagen mutation.
Results: Four novel homozygous and compound heterozygous mutations were identified in LEPRE1 in four probands. Two probands survived the neonatal period, including one patient who is the eldest reported patient (17(7/12) years) so far with P3H1 deficiency. At birth, clinical and radiologic features were hardly distinguishable from those in patients with autosomal dominant (AD) severe/lethal OI. Follow-up data reveal that the longer lived patients develop a severe osteochondrodysplasia that overlaps with, but has some distinctive features from, AD OI. A new splice site mutation was identified in two of the four probands, affecting only one of three LEPRE1 mRNA splice forms, detected in this study. The affected splice form encodes a 736 amino acid (AA) protein with a "KDEL'' endoplasmic reticulum retention signal. While western blotting and immunocytochemical analysis of fibroblast cultures revealed absence of this P3H1 protein, mass spectrometry and SDS-urea-PAGE data showed severe reduction of alpha 1(I) Pro986 3-hydroxylation and overmodification of type I (pro) collagen chains in skin fibroblasts of the patients.
Conclusion: These findings suggest that the 3-hydroxylation function of P3H1 is restricted to the 736AA splice form
Context-Based Filtering of Noisy Labels for Automatic Basemap Updating From UAV Data
Unmanned aerial vehicles (UAVs) have the potential to obtain high-resolution aerial imagery at frequent intervals, making them a valuable tool for urban planners who require up-to-date basemaps. Supervised classification methods can be exploited to translate the UAV data into such basemaps. However, these methods require labeled training samples, the collection of which may be complex and time consuming. Existing spatial datasets can be exploited to provide the training labels, but these often contain errors due to differences in the date or resolution of the dataset from which these outdated labels were obtained. In this paper, we propose an approach for updating basemaps using global and local contextual cues to automatically remove unreliable samples from the training set, and thereby, improve the classification accuracy. Using UAV datasets over Kigali, Rwanda, and Dar es Salaam, Tanzania, we demonstrate how the amount of mislabeled training samples can be reduced by 44.1% and 35.5%, respectively, leading to a classification accuracy of 92.1% in Kigali and 91.3% in Dar es Salaam. To achieve the same accuracy in Dar es Salaam, between 50000 and 60000 manually labeled image segments would be needed. This demonstrates that the proposed approach of using outdated spatial data to provide labels and iteratively removing unreliable samples is a viable method for obtaining high classification accuracies while reducing the costly step of acquiring labeled training samples
Porcine-derived collagen peptides promote re-epithelialisation through activation of integrin signalling
\ua9 2024 The Authors. Wound Repair and Regeneration published by Wiley Periodicals LLC on behalf of The Wound Healing Society.Chronic non-healing cutaneous wounds represent a major burden to patients and healthcare providers worldwide, emphasising the continued unmet need for credible and efficacious therapeutic approaches for wound healing. We have recently shown the potential for collagen peptides to promote proliferation and migration during cutaneous wound healing. In the present study, we demonstrate that the application of porcine-derived collagen peptides significantly increases keratinocyte and dermal fibroblast expression of integrin α2β1 and activation of an extracellular signal-related kinase (ERK)-focal adhesion kinase (FAK) signalling cascade during wound closure in vitro. SiRNA-mediated knockdown of integrin β1 impaired porcine-derived collagen peptide-induced wound closure and activation of ERK-FAK signalling in keratinocytes but did not impair ERK or FAK signalling in dermal fibroblasts, implying the activation of differing downstream signalling pathways. Studies in ex vivo human 3D skin equivalents subjected to punch biopsy-induced wounding confirmed the ability of porcine-derived collagen peptides to promote wound closure by enhancing re-epithelialisation. Collectively, these data highlight the translational and clinical potential for porcine-derived collagen peptides as a viable therapeutic approach to promote re-epithelialisation of superficial cutaneous wounds
- …