21 research outputs found

    Depth electrode neurofeedback with a virtual reality interface

    Get PDF
    Invasive brain–computer interfaces (BCI) provide better signal quality in terms of spatial localization, frequencies and signal/noise ratio, in addition to giving access to deep brain regions that play important roles in cognitive or affective processes. Despite some anecdotal attempts, little work has explored the possibility of integrating such BCI input into more sophisticated interactive systems like those which can be developed with game engines. In this article, we integrated an amygdala depth electrode recorder with a virtual environment controlling a virtual crowd. Subjects were asked to down regulate their amygdala using the level of unrest in the virtual room as feedback on how successful they were. We report early results which suggest that users adapt very easily to this paradigm and that the timing and fluctuations of amygdala activity during self-regulation can be matched by crowd animation in the virtual room. This suggests that depth electrodes could also serve as high-performance affective interfaces, notwithstanding their strictly limited availability, justified on medical grounds only

    Hidden spin-texture at topological domain walls drive exchange bias in a Weyl semimetal

    Full text link
    Exchange bias is a phenomenon critical to solid-state technologies that require spin valves or non-volatile magnetic memory. The phenomenon is usually studied in the context of magnetic interfaces between antiferromagnets and ferromagnets, where the exchange field of the former acts as a means to pin the polarization of the latter. In the present study, we report an unusual instance of this phenomenon in the topological Weyl semimetal Co3Sn2S2, where the magnetic interfaces associated with domain walls suffice to bias the entire ferromagnetic bulk. Remarkably, our data suggests the presence of a hidden order parameter whose behavior can be independently tuned by applied magnetic fields. For micron-size samples, the domain walls are absent, and the exchange bias vanishes, suggesting the boundaries are a source of pinned uncompensated moment arising from the hidden order. The novelty of this mechanism suggests exciting opportunities lie ahead for the application of topological materials in spintronic technologies.Comment: Main text: 11 pages, 4 figures. Supplementary information: 7 pages, 6 figures. Supplementary videos:

    Dual array EEG-fMRI : An approach for motion artifact suppression in EEG recorded simultaneously with fMRI

    Get PDF
    Objective: Although simultaneous recording of EEG and MRI has gained increasing popularity in recent years, the extent of its clinical use remains limited by various technical challenges. Motion interference is one of the major challenges in EEG-fMRI. Here we present an approach which reduces its impact with the aid of an MR compatible dual-array EEG (daEEG) in which the EEG itself is used both as a brain signal recorder and a motion sensor. Methods: We implemented two arrays of EEG electrodes organized into two sets of nearly orthogonally intersecting wire bundles. The EEG was recorded using referential amplifiers inside a 3 T MR-scanner. Virtual bipolar measurements were taken both along bundles (creating a small wire loop and therefore minimizing artifact) and across bundles (creating a large wire loop and therefore maximizing artifact). Independent component analysis (ICA) was applied. The resulting ICA components were classified into brain signal and noise using three criteria: 1) degree of two-dimensional spatial correlation between ICA coefficients along bundles and across bundles; 2) amplitude along bundles vs. across bundles; 3) correlation with ECG. The components which passed the criteria set were transformed back to the channel space. Motion artifact suppression and the ability to detect interictal epileptic spikes following daEEG and Optimal Basis Set (OBS) procedures were compared in 10 patients with epilepsy. Results: The SNR achieved by daEEG was 11.05 +/- 3.10 and by OBS was 8.25 +/- 1.01 (p <0.00001). In 9 of 10 patients, more spikes were detected after daEEG than after OBS (p <0.05). Significance: daEEG improves signal quality in EEG-fMRI recordings, expanding its clinical and research potential. (C) 2016 Elsevier Inc. All rights reserved.Peer reviewe

    Virtual MEG Helmet : Computer Simulation of an Approach to Neuromagnetic Field Sampling

    Get PDF
    Head movements during an MEG recording are commonly considered an obstacle. In this computer simulation study, we introduce an approach, the virtual MEG helmet (VMH), which employs the head movements for data quality improvement. With a VMH, a denser MEG helmet is constructed by adding new sensors corresponding to different head positions. Based on the Shannon's theory of communication, we calculated the total information as a figure of merit for comparing the actual 306-sensor Elekta Neuromag helmet to several types of the VMH. As source models, we used simulated randomly distributed source current (RDSC), simulated auditory and somatosensory evoked fields. Using the RDSC model with the simulation of 360 recorded events, the total information (bits/sample) was 989 for the most informative single head position and up to 1272 for the VMH (addition of 28.6%). Using simulated AEFs, the additional contribution of a VMH was 12.6% and using simulated SEF only 1.1%. For the distributed and bilateral sources, a VMH can provide a more informative sampling of the neuromagnetic field during the same recording time than measuring the MEG from one head position. VMH can, in some situations, improve source localization of the neuromagnetic fields related to the normal and pathological brain activity. This should be investigated further employing real MEG recordings.Peer reviewe

    Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions.

    No full text
    Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping

    Early Oxygen Treatment Measurements Can Predict COVID-19 Mortality: A Preliminary Study

    No full text
    Halting the rapid clinical deterioration, marked by arterial hypoxemia, is among the greatest challenges clinicians face when treating COVID-19 patients in hospitals. While it is clear that oxygen measures and treatment procedures describe a patient’s clinical condition at a given time point, the potential predictive strength of the duration and extent of oxygen supplementation methods over the entire course of hospitalization for a patient death from COVID-19 has yet to be assessed. In this study, we aim to develop a prediction model for COVID-19 mortality in hospitals by utilizing data on oxygen supplementation modalities of patients. We analyzed the data of 545 patients hospitalized with COVID-19 complications admitted to Assuta Ashdod Medical Center, Israel, between 7 March 2020, and 16 March 2021. By solely analyzing the daily data on oxygen supplementation modalities in 182 random patients, we could identify that 75% (9 out of 12) of individuals supported by reservoir oxygen masks during the first two days died 3–30 days following hospital admission. By contrast, the mortality rate was 4% (4 out of 98) among those who did not require any oxygenation supplementation. Then, we combined this data with daily blood test results and clinical information of 545 patients to predict COVID-19 mortality. Our Random Forest model yielded an area under the receiver operating characteristic curve (AUC) score on the test set of 82.5%, 81.3%, and 83.0% at admission, two days post-admission, and seven days post-admission, respectively. Overall, our results could essentially assist clinical decision-making and optimized treatment and management for COVID-19 hospitalized patients with an elevated risk of mortality

    Author Correction: The role of mPFC and MTL neurons in human choice under goal-conflict

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper
    corecore