430 research outputs found
Flavour-coherent propagators and Feynman rules: Covariant cQPA formulation
We present a simplified and generalized derivation of the flavour-coherent
propagators and Feynman rules for the fermionic kinetic theory based on
coherent quasiparticle approximation (cQPA). The new formulation immediately
reveals the composite nature of the cQPA Wightman function as a product of two
spectral functions and an effective two-point interaction vertex, which
contains all quantum statistical and coherence information. We extend our
previous work to the case of nonzero dispersive self-energy, which leads to a
broader range of applications. By this scheme, we derive flavoured kinetic
equations for local 2-point functions , which are
reminiscent of the equations of motion for the density matrix. We emphasize
that in our approach all the interaction terms are derived from first
principles of nonequilibrium quantum field theory.Comment: 20 pages, 3 figures. Minor modifications, version published in JHE
A Bayesian Outlier Criterion to Detect SNPs under Selection in Large Data Sets
Background: The recent advent of high-throughput SNP genotyping technologies has opened new avenues of research for population genetics. In particular, a growing interest in the identification of footprints of selection, based on genome scans for adaptive differentiation, has emerged.[br/] Methodology/Principal Findings: The purpose of this study is to develop an efficient model-based approach to perform Bayesian exploratory analyses for adaptive differentiation in very large SNP data sets. The basic idea is to start with a very simple model for neutral loci that is easy to implement under a Bayesian framework and to identify selected loci as outliers via Posterior Predictive P-values (PPP-values). Applications of this strategy are considered using two different statistical models. The first one was initially interpreted in the context of populations evolving respectively under pure genetic drift from a common ancestral population while the second one relies on populations under migration-drift equilibrium. Robustness and power of the two resulting Bayesian model-based approaches to detect SNP under selection are further evaluated through extensive simulations. An application to a cattle data set is also provided.[br/] Conclusions/Significance: The procedure described turns out to be much faster than former Bayesian approaches and also reasonably efficient especially to detect loci under positive selection
Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors
MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate
Cerebral activations during viewing of food stimuli in adult patients with acquired structural hypothalamic damage: A functional neuroimaging study
BACKGROUND/OBJECTIVES: Obesity is common following hypothalamic damage due to tumours. Homeostatic and non-homeostatic brain centres control appetite and energy balance but their interaction in the presence of hypothalamic damage remains unknown. We hypothesized that abnormal appetite in obese patients with hypothalamic damage results from aberrant brain processing of food stimuli. We sought to establish differences in activation of brain food motivation and reward neurocircuitry in patients with hypothalamic obesity (HO) compared with patients with hypothalamic damage whose weight had remained stable. SUBJECTS/METHODS: In a cross-sectional study at a University Clinical Research Centre, we studied 9 patients with HO, 10 age-matched obese controls, 7 patients who remained weight-stable following hypothalamic insult (HWS) and 10 non-obese controls. Functional magnetic resonance imaging was performed in the fasted state, 1 h and 3 h after a test meal, while subjects were presented with images of high-calorie foods, low-calorie foods and non-food objects. Insulin, glucagon-like peptide-1, Peptide YY and ghrelin were measured throughout the experiment, and appetite ratings were recorded. RESULTS: Mean neural activation in the posterior insula and lingual gyrus (brain areas linked to food motivation and reward value of food) in HWS were significantly lower than in the other three groups (P=0.001). A significant negative correlation was found between insulin levels and posterior insula activation (P=0.002). CONCLUSIONS: Neural pathways associated with food motivation and reward-related behaviour, and the influence of insulin on their activation may be involved in the pathophysiology of HO.International Journal of Obesity advance online publicatio
Gene expression in a paleopolyploid: a transcriptome resource for the ciliate Paramecium tetraurelia
International audienceBACKGROUND: The genome of Paramecium tetraurelia, a unicellular model that belongs to the ciliate phylum, has been shaped by at least 3 successive whole genome duplications (WGD). These dramatic events, which have also been documented in plants, animals and fungi, are resolved over evolutionary time by the loss of one duplicate for the majority of genes. Thanks to a low rate of large scale genome rearrangement in Paramecium, an unprecedented large number of gene duplicates of different ages have been identified, making this organism an outstanding model to investigate the evolutionary consequences of polyploidization. The most recent WGD, with 51% of pre-duplication genes still in 2 copies, provides a snapshot of a phase of rapid gene loss that is not accessible in more ancient polyploids such as yeast. RESULTS: We designed a custom oligonucleotide microarray platform for P. tetraurelia genome-wide expression profiling and used the platform to measure gene expression during 1) the sexual cycle of autogamy, 2) growth of new cilia in response to deciliation and 3) biogenesis of secretory granules after massive exocytosis. Genes that are differentially expressed during these time course experiments have expression patterns consistent with a very low rate of subfunctionalization (partition of ancestral functions between duplicated genes) in particular since the most recent polyploidization event. CONCLUSIONS: A public transcriptome resource is now available for Paramecium tetraurelia. The resource has been integrated into the ParameciumDB model organism database, providing searchable access to the data. The microarray platform, freely available through NimbleGen Systems, provides a robust, cost-effective approach for genome-wide expression profiling in P. tetraurelia. The expression data support previous studies showing that at short evolutionary times after a whole genome duplication, gene dosage balance constraints and not functional change are the major determinants of gene retention
Dose-Specific Adverse Drug Reaction Identification in Electronic Patient Records: Temporal Data Mining in an Inpatient Psychiatric Population
BACKGROUND: Data collected for medical, filing and administrative purposes in electronic patient records (EPRs) represent a rich source of individualised clinical data, which has great potential for improved detection of patients experiencing adverse drug reactions (ADRs), across all approved drugs and across all indication areas. OBJECTIVES: The aim of this study was to take advantage of techniques for temporal data mining of EPRs in order to detect ADRs in a patient- and dose-specific manner. METHODS: We used a psychiatric hospital’s EPR system to investigate undesired drug effects. Within one workflow the method identified patient-specific adverse events (AEs) and links these to specific drugs and dosages in a temporal manner, based on integration of text mining results and structured data. The structured data contained precise information on drug identity, dosage and strength. RESULTS: When applying the method to the 3,394 patients in the cohort, we identified AEs linked with a drug in 2,402 patients (70.8 %). Of the 43,528 patient-specific drug substances prescribed, 14,736 (33.9 %) were linked with AEs. From these links we identified multiple ADRs (p < 0.05) and found them to occur at similar frequencies, as stated by the manufacturer and in the literature. We showed that drugs displaying similar ADR profiles share targets, and we compared submitted spontaneous AE reports with our findings. For nine of the ten most prescribed antipsychotics in the patient population, larger doses were prescribed to sedated patients than non-sedated patients; five patients exhibited a significant difference (p < 0.05). Finally, we present two cases (p < 0.05) identified by the workflow. The method identified the potentially fatal AE QT prolongation caused by methadone, and a non-described likely ADR between levomepromazine and nightmares found among the hundreds of identified novel links between drugs and AEs (p < 0.05). CONCLUSIONS: The developed method can be used to extract dose-dependent ADR information from already collected EPR data. Large-scale AE extraction from EPRs may complement or even replace current drug safety monitoring methods in the future, reducing or eliminating manual reporting and enabling much faster ADR detection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s40264-014-0145-z) contains supplementary material, which is available to authorised users
Rapid quantification of myocardial fibrosis: a new macro-based automated analysis
Background: Fibrosis is associated with various cardiac pathologies and dysfunction. Current quantification methods are time-consuming and laborious. We describe a semi-automated quantification technique for myocardial fibrosis and validated this using traditional methods
Treatment of osteochondral lesions of the talus: a systematic review
The aim of this study was to summarize all eligible studies to compare the effectiveness of treatment strategies for osteochondral defects (OCD) of the talus. Electronic databases from January 1966 to December 2006 were systematically screened. The proportion of the patient population treated successfully was noted, and percentages were calculated. For each treatment strategy, study size weighted success rates were calculated. Fifty-two studies described the results of 65 treatment groups of treatment strategies for OCD of the talus. One randomized clinical trial was identified. Seven studies described the results of non-operative treatment, 4 of excision, 13 of excision and curettage, 18 of excision, curettage and bone marrow stimulation (BMS), 4 of an autogenous bone graft, 2 of transmalleolar drilling (TMD), 9 of osteochondral transplantation (OATS), 4 of autologous chondrocyte implantation (ACI), 3 of retrograde drilling and 1 of fixation. OATS, BMS and ACI scored success rates of 87, 85 and 76%, respectively. Retrograde drilling and fixation scored 88 and 89%, respectively. Together with the newer techniques OATS and ACI, BMS was identified as an effective treatment strategy for OCD of the talus. Because of the relatively high cost of ACI and the knee morbidity seen in OATS, we conclude that BMS is the treatment of choice for primary osteochondral talar lesions. However, due to great diversity in the articles and variability in treatment results, no definitive conclusions can be drawn. Further sufficiently powered, randomized clinical trials with uniform methodology and validated outcome measures should be initiated to compare the outcome of surgical strategies for OCD of the talus
Genetic influences on the insulin response of the beta cell to different secretagogues
Aims/hypothesis: The aim of the present study was to estimate the heritability of the beta cell insulin response to glucose and to glucose combined with glucagon-like peptide-1 (GLP-1) or with GLP-1 plus arginine. Methods: This was a twin-family study that included 54 families from the Netherlands Twin Register. The participants were healthy twin pairs and their siblings of the same sex, aged 20 to 50 years. Insulin response of the beta cell was assessed by a modified hyperglycaemic clamp with additional GLP-1 and arginine. Insulin sensitivity index (ISI) was assessed by the euglycaemic-hyperinsulinaemic clamp. Multivariate structural equation modelling was used to obtain heritabilities and the genetic factors underlying individual differences in BMI, ISI and secretory responses of the beta cell. Results: The heritability of insulin levels in response to glucose was 52% and 77% for the first and second phase, respectively, 53% in response to glucose+GLP-1 and 80% in response to an additional arginine bolus. Insulin responses to the administration of glucose, glucose+GLP-1 and glucose+GLP-1+arginine were highly correlated (0.62<r<0.79). Heritability of BMI and ISI was 74% and 60% respectively. The genetic factors that influenced BMI and ISI explained about half of the heritability of insulin levels in response to the three secretagogues. The other half was due to genetic factors specific to the beta cell. Conclusions/interpretation: In healthy adults, genetic factors explain most of the individual differences in the secretory capacity of the beta cell. These genetic influences are partly independent from the genes that influence BMI and ISI. © 2009 Springer-Verlag
- …