62 research outputs found
Temporal contrast-dependent modeling of laser-driven solids - studying femtosecond-nanometer interactions and probing
Establishing precise control over the unique beam parameters of laser-accelerated ions from relativistic ultra-short pulse laser-solid interactions has been a major goal for the past 20 years. While the spatio-temporal coupling of laser-pulse and target parameters create transient phenomena at femtosecond-nanometer scales that are decisive for the acceleration performance, these scales have also largely been inaccessible to experimental observation. Computer simulations of laser-driven plasmas provide valuable insight into the physics at play. Nevertheless, predictive capabilities are still lacking due to the massive computational cost to perform these in 3D at high resolution for extended simulation times. This thesis investigates the optimal acceleration of protons from ultra-thin foils following the interaction with an ultra-short ultra-high intensity laser pulse, including realistic contrast conditions up to a picosecond before the main pulse. Advanced ionization methods implemented into the highly scalable, open-source particle-in-cell code PIConGPU enabled this study. Supporting two experimental campaigns, the new methods led to a deeper understanding of the physics of Laser-Wakefield acceleration and Colloidal Crystal melting, respectively, for they now allowed to explain experimental observations with simulated ionization- and plasma dynamics. Subsequently, explorative 3D3V simulations of enhanced laser-ion acceleration were performed on the Swiss supercomputer Piz Daint. There, the inclusion of realistic laser contrast conditions altered the intra-pulse dynamics of the acceleration process significantly. Contrary to a perfect Gaussian pulse, a better spatio-temporal overlap of the protons with the electron sheath origin allowed for full exploitation of the accelerating potential, leading to higher maximum energies. Adapting well-known analytic models allowed to match the results qualitatively and, in chosen cases, quantitatively. However, despite complex 3D plasma dynamics not being reflected within the 1D models, the upper limit of ion acceleration performance within the TNSA scenario can be predicted remarkably well. Radiation signatures obtained from synthetic diagnostics of electrons, protons, and bremsstrahlung photons show that the target state at maximum laser intensity is encoded, previewing how experiments may gain insight into this previously unobservable time frame.
Furthermore, as X-ray Free Electron Laser facilities have only recently begun to allow observations at femtosecond-nanometer scales, benchmarking the physics models for solid-density plasma simulations is now in reach. Finally, this thesis presents the first start-to-end simulations of optical-pump, X-ray-probe laser-solid interactions with the photon scattering code ParaTAXIS. The associated PIC simulations guided the planning and execution of an LCLS experiment, demonstrating the first observation of solid-density plasma distribution driven by near-relativistic short-pulse laser pulses at femtosecond-nanometer resolution
Temporal contrast-dependent modeling of laser-driven solids: studying femtosecond-nanometer interactions and probing
Establishing precise control over the unique beam parameters of laser-accelerated ions from relativistic ultra-short pulse laser-solid interactions has been a major goal for the past 20 years. While the spatio-temporal coupling of laser-pulse and target parameters create transient phenomena at femtosecond-nanometer scales that are decisive for the acceleration performance, these scales have also largely been inaccessible to experimental observation. Computer simulations of laser-driven plasmas provide valuable insight into the physics at play. Nevertheless, predictive capabilities are still lacking due to the massive computational cost to perform these in 3D at high resolution for extended simulation times. This thesis investigates the optimal acceleration of protons from ultra-thin foils following the interaction with an ultra-short ultra-high intensity laser pulse, including realistic contrast conditions up to a picosecond before the main pulse. Advanced ionization methods implemented into the highly scalable, open-source particle-in-cell code PIConGPU enabled this study. Supporting two experimental campaigns, the new methods led to a deeper understanding of the physics of Laser-Wakeâeld acceleration and Colloidal Crystal melting, respectively, for they now allowed to explain experimental observations with simulated ionization- and plasma dynamics. Subsequently, explorative 3D3V simulations of enhanced laser-ion acceleration were performed on the Swiss supercomputer Piz Daint. There, the inclusion of realistic laser contrast conditions altered the intra-pulse dynamics of the acceleration process significantly. Contrary to a perfect Gaussian pulse, a better spatio-temporal overlap of the protons with the electron sheath origin allowed for full exploitation of the accelerating potential, leading to higher maximum energies. Adapting well-known analytic models allowed to match the results qualitatively and, in chosen cases, quantitatively. However, despite complex 3D plasma dynamics not being reflected within the 1D models, the upper limit of ion acceleration performance within the TNSA scenario can be predicted remarkably well. Radiation signatures obtained from synthetic diagnostics of electrons, protons, and bremsstrahlung photons show that the target state at maximum laser intensity is encoded, previewing how experiments may gain insight into this previously unobservable time frame. Furthermore, as X-ray Free Electron Laser facilities have only recently begun to allow observations at femtosecond-nanometer scales, benchmarking the physics models for solid-density plasma simulations is now in reach. Finally, this thesis presents the first start-to-end simulations of optical-pump, X-ray-probe laser-solid interactions with the photon scattering code ParaTAXIS. The associated PIC simulations guided the planning and execution of an LCLS experiment, demonstrating the first observation of solid-density plasma distribution driven by near-relativistic short-pulse laser pulses at femtosecond-nanometer resolution.Die Erlangung prĂ€ziser Kontrolle uÌber die einzigartigen Strahlparameter von laserbeschleunigten Ionen aus relativistischen Ultrakurzpuls-Laser-Festkörper-Wechselwirkungen ist ein wesentliches Ziel der letzten 20 Jahre. WĂ€hrend die rĂ€umlich-zeitliche Kopplung von Laserpuls und Targetparametern transiente PhĂ€nomene auf Femtosekunden- und Nanometerskalen erzeugt, die fuÌr den Beschleunigungsprozess entscheidend sind, waren diese Skalen der experimentellen Beobachtung bisher weitgehend unzugĂ€nglich. Computersimulationen von lasergetriebenen Plasmen liefern dabei wertvolle Einblicke in die zugrunde liegende Physik. Dennoch mangelt es noch an Vorhersagemöglichkeiten aufgrund des massiven Rechenaufwands, um Parameterstudien in 3D mit hoher Auflösung fuÌr lĂ€ngere Simulationszeiten durchzufuÌhren. In dieser Arbeit wird die optimale Beschleunigung von Protonen aus ultraduÌnnen Folien nach der Wechselwirkung mit einem ultrakurzen UltrahochintensitĂ€ts-Laserpuls unter Einbeziehung realistischer Kontrastbedingungen bis zu einer Pikosekunde vor dem Hauptpuls untersucht. Hierbei ermöglichen neu implementierte fortschrittliche Ionisierungsmethoden fuÌr den hoch skalierbaren, quelloffenen Partikel-in-Zelle-Code PIConGPU von nun an Studien dieser Art. Bei der UnterstuÌtzung zweier Experimentalkampagnen fuÌhrten diese Methoden zu einem tieferen VerstĂ€ndnis der Laser-Wakeâeld-Beschleunigung bzw. des Schmelzens kolloidaler Kristalle, da nun experimentelle Beobachtungen mit simulierter Ionisations- und Plasmadynamik erklĂ€rt werden konnten. Im Anschluss werden explorative 3D3V Simulationen verbesserter Laser-Ionen-Beschleunigung vorgestellt, die auf dem Schweizer Supercomputer Piz Daint durchgefuÌhrt wurden. Dabei verĂ€nderte die Einbeziehung realistischer Laserkontrastbedingungen die Intrapulsdynamik des Beschleunigungsprozesses signifikant. Im Gegensatz zu einem perfekten GauĂ-Puls erlaubte eine bessere rĂ€umlich-zeitliche Ăberlappung der Protonen mit dem Ursprung der Elektronenwolke die volle Ausnutzung des Beschleunigungspotentials, was zu höheren maximalen Energien fuÌhrte. Die Adaptation bekannter analytischer Modelle erlaubte es, die Ergebnisse qualitativ und in ausgewĂ€hlten FĂ€llen auch quantitativ zu bestĂ€tigen. Trotz der in den 1D-Modellen nicht abgebildeten komplexen 3D-Plasmadynamik zeigt die Vorhersage erstaunlich gut das obere Limit der erreichbaren Ionen-Energien im TNSA Szenario. Strahlungssignaturen, die aus synthethischen Diagnostiken von Elektronen, Protonen und Bremsstrahlungsphotonen gewonnen wurden, zeigen, dass der Target-Zustand bei maximaler LaserintensitĂ€t einkodiert ist, was einen Ausblick darauf gibt, wie Experimente Einblicke in dieses bisher unbeobachtbare Zeitfenster gewinnen können. Mit neuen Freie-Elektronen-Röntgenlasern sind Beobachtungen auf Femtosekunden-Nanometerskalen endlich zugĂ€nglich geworden. Damit liegt ein Benchmarking der physikalischen Modelle fuÌr Plasmasimulationen bei Festkörperdichte nun in Reichweite, aber Experimente sind immer noch selten, komplex, und schwer zu interpretieren. Zuletzt werden daher in dieser Arbeit die ersten Start-zu-End-Simulationen der Pump-Probe Wechselwirkungen von optischem sowie Röntgenlaser mit Festkörpern mittels des Photonenstreu-Codes ParaTAXIS vorgestellt. DaruÌber hinaus dienten die zugehörigen PIC-Simulationen als Grundlage fuÌr die Planung und DurchfuÌhrung eines LCLS-Experiments zur erstmaligen Beobachtung einer durch nah-relativistische Kurzpuls-Laserpulse getriebenen Festkörper-Plasma-Dichte, dessen Auflösungsbereich gleichzeitig bis auf Femtosekunden und Nanometer vordrang
Comparing field ionization models in simulations of laser-matter interaction
Field ionization plays an important role in modeling the interaction of high-power, ultra-short
laser pulses with matter. Many field ionization models exist that have predictive capability
at non-relativistic laser intensities and for laser pulse durations much longer than the
atomic time scales. Most existing models take a quasi-static approach to the laser field on
atomic dimensions and time scales. Yet, with pulses as short as a few ~10 to ~100 as and
intensities of 1021 W/cm2 the feasibility of these approximations becomes questionable. Still,
the exploration of plasma effects in relativistic laser matter interaction requires to test the
boundaries of validity for these models. This thesis will take a step to point out the difficulties
to be considered when existing ionization models are applied to such extreme cases
Spectral Control via Multi-Species Effects in PW-Class Laser-Ion Acceleration
Laser-ion acceleration with ultra-short pulse, PW-class lasers is dominated
by non-thermal, intra-pulse plasma dynamics. The presence of multiple ion
species or multiple charge states in targets leads to characteristic
modulations and even mono-energetic features, depending on the choice of target
material. As spectral signatures of generated ion beams are frequently used to
characterize underlying acceleration mechanisms, thermal, multi-fluid
descriptions require a revision for predictive capabilities and control in
next-generation particle beam sources. We present an analytical model with
explicit inter-species interactions, supported by extensive ab initio
simulations. This enables us to derive important ensemble properties from the
spectral distribution resulting from those multi-species effects for arbitrary
mixtures. We further propose a potential experimental implementation with a
novel cryogenic target, delivering jets with variable mixtures of hydrogen and
deuterium. Free from contaminants and without strong influence of hardly
controllable processes such as ionization dynamics, this would allow a
systematic realization of our predictions for the multi-species effect.Comment: 4 pages plus appendix, 11 figures, paper submitted to a journal of
the American Physical Societ
Deliverable D4.4 Simulated coherent scattering data from plasma and nonâplasma samples
Deliverable D4.4 of work package 4 (SIMEX) in EUCALL
A Laser-Plasma Ion Beam Booster Based on Hollow-Channel Magnetic Vortex Acceleration
Laser-driven ion acceleration can provide ultra-short, high-charge,
low-emittance beams. Although undergoing extensive research, demonstrated
maximum energies for laser-ion sources are non-relativistic, complicating
injection into high- accelerator elements and stopping short of
desirable energies for pivotal applications, such as proton tumor therapy. In
this work, we decouple the efforts towards relativistic beam energies from a
single laser-plasma source via a proof-of-principle concept, boosting the beam
into this regime through only a few plasma stages. We employ full 3D
particle-in-cell simulations to demonstrate the capability for capture of
high-charge beams as produced by laser-driven sources, where both source and
booster stages utilize readily available laser pulse parameters.Comment: 4 pages, 4 figures, submitted for peer revie
Recommended from our members
Laser-plasma ion beam booster based on hollow-channel magnetic vortex acceleration
Laser-driven ion acceleration provides ultrashort, high-charge, low-emittance beams, which are desirable for a wide range of high-impact applications. Yet after decades of research, a significant increase in maximum ion energy is still needed. This paper introduces a quality-preserving staging concept for ultraintense ion bunches that is seamlessly applicable from the nonrelativistic plasma source to the relativistic regime. Full three-dimensional particle-in-cell simulations prove robustness and capture of a high-charge proton bunch, suitable for readily available and near-term laser facilities.
Published by the American Physical Society
202
Exascale and ML Models for Accelerator Simulations
Computational modeling is essential to the exploration and design of advanced particle accelerators. The modeling of laser-plasma acceleration and interaction can achieve predictive quality for experiments if adequate resolution, full geometry and physical effects are included.
Here, we report on the significant evolution in fully relativistic full-3D modeling of conventional and advanced accelerators in the WarpX and ImpactX codes with the introduction of Exascale supercomputing and AI/ML models. We will cover the first PIC simulations on an Exascale machine, the need for and evolution of open standards, and based on our fully open community codes, the connection of time and space scales from plasma to conventional beamlines with data-driven machine-learning models
- âŠ