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1. Outline
As first applications of our simulation software suite simex platform [1, 2, 17], we have employed
the simulation capabilities of simex platform [1] to simulate two photon experiments:
1. Coherent diffraction from high–power laser excited optically thin and thick plasmas (plasma
sample)

2. Single particle imaging at the European XFEL (non–plasma sample)
In addition, we also report on the integration of detector simulations in simex platform.

2. Plasma sample
In Deliverable Report D4.3 [17], we present the interoperability of X–ray Free–Electron Laser (XFEL)
and Ultra–High Intensity (UHI) laser pulse generation, interaction with the target, and generation of
a Small–Angle X–ray Scattering (SAXS) image using the scattering code ParaTAXIS.
A Particle In Cell (PIC) simulation provides the time evolution of the electron density on which

the XFEL photons are scattered. We assume invariance of the target in propagation direction and
simulate the XFEL pulse with 1012 photons for which the target is optically thin, see left part of Fig.
1. We further demonstrate scattering on an optically thick setup by simulating resonant scattering
on the ions of the target. The ion density follows the electron density as expected for plasma
expansion into vacuum[3], see right part of Fig. 1.
The signal of the optically thick target is washed out due to higher scattering probability. In both,

the optically thin and the optically thick case, the SAXS pattern well resolves the nanometer–scale
grating depth and period, taking into account the target evolution during the interaction time with
the laser pulse.
All density data from the PIC simulation as well as the SAXS patterns are published on Zenodo

together with the data format documentation [20] in partial fulfillment of EUCALL Milestone M4.3
[18].

3. Molecular (non–plasma) sample
Application of simex platform to single–particle imaging experiments at the European X–ray Free
Electron Laser (SPB–SFX scientific instrument) has been published as Ref. [4]. It is also the basis for
an online tutorial on the wiki pages of simex platform and it is discussed in the EUCALL Milestone
M4.2 [19] (First example simulation). The datasets for coherent diffraction from the protein 2NIP
are deposited on the EUCALL Data Repository [21].
The signal generation for non–plasma samples happens in two steps: First, the photon–matter

interaction module calculates for each time step of the simulation the atomic positions and the
atomic form factors for each atom in the sample in the field of the x–ray laser. The effect of ra-
diation damage can be switched on or off in the simulation. In the latter case, the atoms remain
on their initial positions and the form factors correspond to the atomic ground states. This infor-
mation is then taken in the second step to calculate the scattered intensity as a function of time
for each pixel in the virtual 2D pixel detector. The software package pysingfel [5] implements the
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Figure 1: Left: ParaTAXIS SAXS image for the optically thin target at 1.4m distance from the target,
detector pixel size aD = 13.5µm, X-ray wavelength λXFEL = 1.47 Å and 1012 photons in theilluminated area. The vertical separation of scattering lines corresponds to the grating
period of 200nm, the horizontal to the grating depth of 100nm. Right: ParaTAXIS SAXS
image for the optically thick target. Here, the scattering cross section was increased by a
factor of 1000 to account for resonant scattering at the ion density. All other parameters
remain the same.

scattering formula
I(q) = ΩdσTh(θ)dΩ 〈I0〉

∣∣∣∣∣∑i fi(q)eiq·Ri
∣∣∣∣∣
2
, (1)

where dσTh/dΩ is the differential Thomson cross section, 〈I0〉 is the average pulse intensity, Ω is thesolid angle spanned by the considered detector pixel. The wavevector q depends on the detector
geometry (distance d from the sample) and pixel coordinates (rx, ry) in the detector plane assumedto be perpendicular to the beam propagation axis and centered such that the beam axis intersects
the detector plane at its origin:

q = 2π
λ

 sin(2θ) cos(φ)
sin(2θ) cos(φ)
cos(2θ)− 1

 = 2π
λ


rx√r2x+r2y +d2ry√r2x+r2y +d2d−√r2x+r2y +d2√r2x+r2y +d2

 . (2)

Here, 2θ = arctan
( r2x+r2yd )

is the scattering angle and φ = arctan( ryrx ). In this notation, the pixel solid
angle becomes Ω = 4arcsin (a2/ [4(r2x + r2y + d2) + a2]), with the pixel width a.In our simulations, d = 13 cm. The detector is a 512×512 array of pixels of side length a = 200µm
corresponding to one quadrant of a 1 megapixel AGIPD detector [6] at the SPB–SFX instrument at
European XFEL.
We have applied this simulation toolchain to two cases:
1. Diffraction of 5 keV photons from isolated 2NIP molecules and variation of the XFEL pulse
duration, published in Ref. [4].
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2. Diffraction of 5 keV photons from hydrated 2NIP molecules and variation of the hydration
layer thickness, published in Ref. [7].

Fig. 2 shows diffraction patterns from 2NIP with and without radiation damage taken into account
in the simulation. Fig. 3 shows diffraction from the same molecule for two different hydration layer

(a) no radiation damage (b) with radiation damage

Figure 2: Diffraction from 2NIP with 5 keV photons without (a) and with (b) radiation damage taken
into account. Taken from Ref. [7].

thicknesses of 3 Å (a) and 10 Å (b), respectively.
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(b) 10 Å hydration layer

Figure 3: Diffraction patterns for 5 keV XFEL photons scattering from a single 2NIP molecule em-
bedded in a hydration shell of 3 Å (a) and 10 Å (b) thickness.

It can be seen how, qualitatively, the presence of imperfections (radiation damage or hydration
layer) influences the quality of diffraction signals, e.g. the speckle contrast and noise level. In
both cases, we performed statistical analysis of the simulated diffraction patterns as a function
of the varied parameters pulse duration and hydration layer thickness, respectively to gain more
quantitative insight into the dependency of diffraction data quality on these effects.
Fig. 4 shows the coefficient of variation, a measure of interpretability of single–particle diffrac-

tion patterns [8, 4] for Free–Electron Laser (FEL) pulse durations of 3 fs, 9 fs and 30 fs. The larger

This project has received funding from the European Unions Horizon 2020 research and
innovation programme under grant agreement No 654220. 4



D4.4

coefficients of variation found in the 3 fs case indicating poor data quality is due to the significantly
lower photon flux at these ultra–short pulses. This in turn comes from the intrinsic dependence of
pulse duration on the electron bunch charge FEL: Highly charged bunches, producing a high photon
flux, experience higher space charge effects and stronger longitudinal dispersion leading to longer
pulse durations.
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Figure 4: Coefficient of variation obtained from oriented simulated diffraction patterns for 2NIP
probed by 5 keV XFEL pulses of varying pulse duration and photon flux. Figure taken from
Ref. [4].

Fig. 5 shows the R–value for averaged simulated diffraction patterns as a function of the hydration
layer thickness. Radiation damage has been neglected in these simulations to isolate the effect of
the water presence. R < 0.2 indicates good data quality allowing reconstruction of the 3D electron
density at resolution d = 2π/q. Following this argument, the presence of a 3 Å thick hydration layer
would allow reconstruction on the level of a few Å length scales.

4. Detector simulations
Simulations of measurable signals should not only take into account the mechanism of x–ray scat-
tering from the sample but also the response of the detector to the scattered light impinging on
the detector surface. So far, these detector simulations have been missing in simex platform for
various technical reasons as discussed e.g. in the EUCALL mid term report. These obstacles have
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6.0 Å
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Figure 5: R–value obtained from simulated diffraction patterns for 2NIP probed by probed by 5 keV
XFEL pulses of 9 fs pulse duration as a function of the hydration layer thickness. Figure
taken from Ref. [7]

now been overcome. In the following, we present the implementation of detector simulations in
the simulation environment simex platform followed by a first example simulation.

4.1. Detector simulation software
For the purpose of detector simulations, the software packages Geant4 (http://geant4.cern.ch/)
and X-CSIT (https://git.xfel.eu/gitlab/karaboDevices/xcsit) are utilized that have already been
successfully implemented in the data analysis and control framework of the European XFEL karabo
(https://git.xfel.eu/gitlab/Karabo/Framework). In contrast to karabo, where all the simulation
is performed with devices which are integrated into the framework processing pipe, SimEx is a col-
lection of classes. Consequently, installation as well as maintenance and usage of new components
are more convenient in SimEx.
Another difference is the programming language: In contrast to karabo and X-CSIT which are

written in C++, SimEx is written in python. Since X-CSIT is the basis of the simulation also in this
project, the interface defined needs to be made accessible from python. To integrate it into SimEx
an additional calculator needs to be written that utilizes the extended functions from X-CSIT. To
achieve this, an interface between C++ written X-CSIT and python written SimEx source code is
designed and implemented. This includes writing source code in C++ and python as well as creating
a build procedure with cmake. Furthermore, an appropriate documentation and similar coding style
like the one used for other SimEx calculators is required.

This project has received funding from the European Unions Horizon 2020 research and
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Figure 6: Application Specific Integrated Circuit of a single pixel of the AGIPD detector with storage
pipeline. Source: [9].

4.2. Detector Effects
Particle detectors are complex electronic devices ranging from transistors to APplication specific
Integrated Circuits (APICs) [10] [11]. Due to imperfections in the material those circuits bear a
natural source of fluctuations. Especially, the influence of leakage currents on operation amplifiers
that increase with radiation intensity can result in increased noise levels [11]. The resulting noise is
often still smaller than e.g. the statistical fluctuations in the photon number in each pixel [11].
Furthermore, leakage currents from another origin aremuchmore serious. Since the XFEL source

produces more images than can be processed in one of its 600µs pulse trains, the detector needs
to store those image values previous to processing in a pipeline for each pixel (see figure 6). After
each of those pulse trains there is a gap of approx. 100ms, where the detector reads the pixel
values of all stored images, digitizes them and store them on a hard disk. This pipelines consist of
capacities and switches that suffer from leakage currents, as well. This not only affects the output
values of intensity but also the noise level of the readout and digits [11].
Detectors at European XFEL have to cope with a very complex parameter space. They have to

cover a broad range of energy of many keV for every pixel independently of each other. Further-
more, the pulse rate of the recording is quite high. Additionally, they need to be sensible enough to
detect single photons but robust enough not to be destroyed at high intensities. This requires pro-
tection of the electronics leading to additional readout noise [10]. Despite optimizations, detectors
have a finite dynamic range of values, which, once exceeded, leads cut–off signals [10].
Additionally, there are also physical effects producing noise. Thermal fluctuations can be reduced

by cooling. However, high intensity radiation can create plasmas in detector pixels that effect neigh-
bouring pixels due to electron drift [10]. The process is called “blooming” and is taken into account
in the charge simulation of this detector simulation project. Additional information can be found
in references: Joy et al. [12], Rüter et al. [13], Shi et al. [11] and Potdevin et al. [10].
Last but not least, the number of photons arriving at a pixel and the number of charges cre-

ated from an interacting photon are statistical values. They are uncertain and follow the Poisson
statistics. Together with the blooming this makes up the most important source for noise. Never-
theless, in many experiments the noise resulting from a well optimized detector is much less than
the fluctuations in the signal resulting e.g. from optical elements[10].

This project has received funding from the European Unions Horizon 2020 research and
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Figure 7: Schema of the different parts of the detector simulation software X–CSIT. Source: [12].

Figure 8: Sketch how a charge cloud produced from a single interaction can spread to neighbouring
pixels. Source: [12].

4.3. Existing Software
4.3.1. Geant4/ X–CSIT
For the simulation of detectors Joy et al. [12] have created an object oriented software library in the
C++ programming language, called X–CSIT1, to simulate the behaviour of 2D semiconductor pixel
detectors. Due to the object orientation not only the initally implmented LPD, AGIPD, DCCS, pnCCD
and FastCCD detectors but also derived detectors can be supported [12]. Initially written for being
integrated into the karabo framework, the software is universal enough to be stand–alone.
X–CSIT consists of three parts [12] as can be seen in figure 7. The first one, the particle simulation,

describes how photons interact with the active layer of the detector. For this purpose X–CSIT acts as
a wrapper of the interaction simulation software Geant4 [12]. Geant4 covers the physical models of
a broad range of energy ranging from keV to TeV [14]. The models can handle electromagnetic pro-
cesses such as the photo electric effect and fluorescence but also hadronic and optical processes.
The standard processes such as photo electric effect, Compton and Rayleigh scattering, as well as
Auger processes are also included [12, 14]. For this part X–CSIT has the task to manage the data
transfer from and to Geant4. The second part, the charge simulation, deals with the propagation
of the charges and plasmas created by interactions. Their behaviour is mainly governed by drift
and diffusion of electrons which can be described with a Gaussian normal distribution (see figure
8) with the following standard derivation [12]:

σd =
√2kBTqE · d. (3)

1X–CSIT is not free software, hence access is limited to users who have access to the European XFEL gitlab repository.
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Here d is the depth in thematerial, T the temperature, q the drifting total charge and E the electrical
field that pulls the charge to the readout electronics of the detector.
The last part of X–CSIT covers the detector readout electronics. The electronic simulation simu-

lates the electronic components of the detector and their behaviour. For this purpose, X–CSIT offers
modules which are combined to represent the circuits of the detector [12]. This simulation is not
included the detector simulations for simex platform because it requires a tight connection to, e.g.,
the calibration software and database for specific detectors.

4.4. Extending C++ to Python
Since X–CSIT is written in C++ and the calculators of the SimEx2 are written in python, there is a
need of extending C++ classes to python. To extend the X–CSIT classes to python, we used the
boost.python library (http://www.boost.org/doc/libs/1_65_0/libs/python/doc/html/index.html)
Boost.python consits of header files that need to be added to the C++ implementations. Additionally,
in a BOOST PYTHON MODULE needs to be defined. This module creates the equivalent of a python
module and needs to define all the extended classes, their functions as well as their return and
input parameters explicitly [15]. Consequently, boost.python can be seen as a module including
abstract types that can be linked to C++ instances as well as to python instances.

4.5. Design
Since C++ and python programming languages belong to the object oriented programming lan-
guages, the concept of inheritance and polymorphism are well suited to achieve the desired exten-
sion and integration. Polymorphism is the key concept for using self written classes of this design
in X–CSIT. It allows also to minimize redundant source code that is always a potential source of error
and very difficult to maintain. However, the required features remain accessible. For this reason, all
the created classes except Constants are derived from X–CSIT or SimEx base classes and interfaces
as can be seen in figure 9.
Another important aspect of this design is the design of the python class. In the end, this is

the class that is accessed and used for performing the simulation. For this reason, it should have
control over input and output as well as control over running the simulation. As can be seen in
figure 9, the XCSITPhotonDetector calculator is given control over each step of the simulations. This
includes creating data containers, initiate and run the simulations as well as reading the input file
and creating the output file.
Nevertheless, the simulation itself should be triggered from C++ code. One reason for this is

that tunnelling through the boost.python layer is assumed to be slow. Additionally, python code is
slower than C++ and there where additional features needed such as a changed function signature
in ChargeSim. Consequently, setting up and running simulations is programmed in C++ and only
calling these functions is extended to python.
Last but not least, the entire project needs to be integrated into simex platform. With regard to

the source code style and function this can easily be achieved by applying inheritance. However,
one does not want to compile X–CSIT each time you compile also this project. For this reason, for
both X–CSIT and py detector interface cmake is used to compile and link the compiled classes to
shared objects. Shared objects are the Unix equivalents of Windows’ dynamical linked libraries
(.dll) offering a comfortable way to release and use applications.
2SimEx is the python library inside the simulation environment simex platform

This project has received funding from the European Unions Horizon 2020 research and
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Figure 9: Sketch showing the dependencies and inheritance structure of the py detector interface.
Colour code: yellow =̂ classes written in python, blue =̂ classes written in C++, red arrows
=̂ inheritance, green arrows =̂ manipulation of other instances, black arrows =̂ data flow.
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category options
DetectorType pnCCD, LPD, AGIPD, AGIPDSPB, CAD
PlasmaSearch BLANK
PlasmaSim BLANKPLASMA
PointSim FULL, FANO, LUT, BINNING

Table 1: This table show the options to choose from when selecting a mode for the simulations.

4.5.1. C++ classes
There are essentially two groups of C++ classes written for this project. The first one consists
of the input and output containers. They are derived from abstract interfaces located in X–CSIT,
which have already an implementation in X–CSIT. The following data containers where implemented
using the abstract X–CSIT interfaces: XPhotonEntry, XPhotonData, XInteractionData, XInteractionEntry,
XChargeEntry and XChargeData. Due to polymorphism other X–CSIT functions can deal with classes
derived from them.
The second group of C++ classes deal with the simulations. There is a simulation of the photons

interacting with thematter of the detector and a simulation dealing with the propagation of created
charges in the detector. Both simulations have a parent class in X–CSIT. Their task is to behave like
a filter. To run a simulation with the X–CSIT parent classes certain functions with certain formal
parameters in their signature have to be called in a specific sequence. In order to avoid the need
to extending all those types from X–CSIT possible to use as these formal parameters the simulation
classes are necessary.
The functions of ParticleSim and ChargeSim receive strings to choose which instances of X–CSIT

need to be instantiated and bound to a formal parameter of a X–CSIT simulation call. Furthermore,
this make addition of e.g. detectors easier because they need to be added to the C++ simulation
classes and Constants only. There is no need to export them to python. Currently the following
options are included: Furthermore, the simulation characterisation options specified in table 1 are
needed in various classes. For instance, the ”DetectorType“option is required for both ParticleSimand ChargeSim. Additionally, all their constants need to be accessible from the
XCSITPhotonDetectorParamters class as well. For this reason, the constants are stored in an own
class. Exploiting the capacities of C++ classes to inherit from many parent classes, ParticleSim and
ChargeSim are not just inheriting from their X–CSIT parents but also from Constants. In principle, it
would also be possible to make
XCSITPhotonDetectorParamters inherit the constants from Constants. Since this is much more com-
plicated due to the nature of the attributes of Constants (arrays of strings) than adding functions to
Constants that return the values, the latter was implemented.
4.5.2. Python calculators
Two python classes were written. The first one,
XCSITPhotonDetectorParameters, implements the abstract python class
AbstractCalculatorParameters. Its purpose is to gather and check all the input parameters. If an
parameter is set which is not specified in Constants an exception is raised. Nevertheless, instances
of this class are essentially containers with property getter and setter functions. The properties are
the same as the options in table 1.

This project has received funding from the European Unions Horizon 2020 research and
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The second class is the calculator itself. It implements AbstractPhotonDetector which itself is de-
rived from AbstractBaseCalculator. For this reason, the way the simulation is performed is already
predetermined:
1. After instantiation python calls immediately the init function. This function possesses three
formal parameters: a XCSITPhotonDetectorParameters instance, a variable to store the path for
the input file and a variable to store the path for the output file. Since python variables do
not have types, the init function has to check if the inserted actual parameters fit with the
required instances. Furthermore, init deals with incomplete input.

2. The next method to call is readH5. Since the input to this calculator is different to the input
of ParticleSim and ChargeSim, the data from the hdf5 input file has to be translated: The ma-
trix of intensities is read and transformed into instances of PhotonEnty stored in an instance
of PhotonData. The instances of PhotonEntry store for each photon the following attributes:
energy, normalized vector of flight direction, current position. Those values where calculated
from the input data by applying geometry.

3. For running the simulation the backenginemethod has to be called. It consists of two parts:
a) The PhotonData instance is passed into ParticleSim which transfers the container into
XCSIT::XGeant4ParticleSim where interactions of the photons with the detector material
are simulated. The output container
InteractionData is also passed to those classes. During the simulation it is filled with
instances of type InteractionEntry that contain for each interaction the deposited energy
in the material at a given site of the detector and the time when that happens after start.

b) The instance of InteractionData is handed to the instance of ChargeSim which transfers it
into XCSIT::XPlasmaPointChargeSim and the Geant4
classes respectively. Since the readout electronics cannot be at the surface of a detector
an electrical field is applied to pull the created charges in thematerial to the readout elec-
tronics. During this propagation charge clouds resulting from e.g. plasmas can broaden
and effect neighbouring pixels. This is simulated in ChargeSim. The output is an instance
of ChargeMatrix, where each element, ChargeEntry, represents a pixel of the detector and
each element contains the number of charges recorded in that detector pixel. Please
note, that the perspective to look at the matrix is parallel to the z-axis/ propagation di-
rection of the light.

4. Last but not least, the data containers and their content are written to the hdf5 output file at
the location specified by the output path.

The structure of the input and output file can be found in the wiki of this project (https://github.
com/eucall-software/py_detector_interface/wiki).

4.6. Application
To test the termination and as a proof of principle the tutorial (https://github.com/eucall-software/
simex_platfrom/wiki/SimEx-Tutorial) has been used to create a sample diffraction pattern of Ni-
trogenase Iron protein from the Protein Data Base (see PDB 2NIP [16]). The used detector quadrant
of the ”AGIPD“detector has 512 x 512 pixels of 200µm x 200µm size. All the photons are simulatedwith an energy of 4.96 keV and the detector is 13 cm away from the origin of diffraction. To obtain

This project has received funding from the European Unions Horizon 2020 research and
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Figure 10: Depicted are the dependencies of the py detector interface project. The green circled
names represent shared objects (.so) on Unix operating systems.

a visible detector response in reasonable compute times, the scattered intensity was multiplied by
a factor 105. The preliminary results of this study are shown in in Fig. 11).

4.7. Conclusions
Detector simulations based on the existing library X–CSIT are now part of simex platform. A proof–
of–concept simulation demonstrates the workflow. The results will have to analyzed and the soft-
ware needs to be profiled and debugged before the detector simulations can be used in production
simulations. This will be among the upcoming tasks in the SIMEX work package.

A. Deviation from proposal
As mentioned in the EUCALL mid term report, ELI’s contributions to the SIMEX work package were
re–defined: Within SIMEX, ELI focusses on the development of a simulation pipeline for Laser–
Plasma Acceleration (LPA) based coherent light sources. The progress is presented in the Deliver-
able Report D4.3 [17]. The task “signal generation from plasma samples” of D4.4 was assigned to
HZDR, and the task “signal generation from non–plasma samples” was assigned to XFEL.

This project has received funding from the European Unions Horizon 2020 research and
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(a) Input intensity calculated by the diffraction calculator. (b) Photonlist created from the the input (see 11a).

(c) Interactions of the photons with the detector material
calculated by X–CSIT and Geant4.

(d) Output of the charge propagation simulation.

Figure 11: This figure shows the state of the data containers at intermediate steps of the simulation.
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