24,258 research outputs found

    Statistics of the residual refraction errors in laser ranging data

    Get PDF
    A theoretical model for the range error covariance was derived by assuming that the residual refraction errors are due entirely to errors in the meteorological data which are used to calculate the atmospheric correction. The properties of the covariance function are illustrated by evaluating the theoretical model for the special case of a dense network of weather stations uniformly distributed within a circle

    Phase locked loop synchronization for direct detection optical PPM communication systems

    Get PDF
    Receiver timing synchronization of an optical pulse position modulation (PPM) communication system can be achieved using a phase locked loop (PLL) if the photodetector output is properly processed. The synchronization performance is shown to improve with increasing signal power and decreasing loop bandwidth. Bit error rate (BER) of the PLL synchronized PPM system is analyzed and compared to that for the perfectly synchronized system. It is shown that the increase in signal power needed to compensate for the imperfect synchronization is small (less than 0.1 dB) for loop bandwidths less than 0.1% of the slot frequency

    Comparison of direct and heterodyne detection optical intersatellite communication links

    Get PDF
    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity

    Speckle noise in direct-detection lidar systems

    Get PDF
    The speckle noise is evaluated from some typical lidar systems. The governing equations are summarized. The mutual intensity function of the speckle pattern is calculated in terms of the laser radiation modes. Typical laser pulses are modeled and simplified expressions for the speckle noise power are derived. The signal-to-speckle-noise ratios for some proposed lidar systems are evaluated

    Remote sensing of sea state by laser altimeters

    Get PDF
    The reflection of short laser pulses from the ocean surface was analyzed based on the specular point theory of scattering. The expressions for the averaged received signal, shot noise and speckle induced noise were derived for a direct detection system. It is found that the reflected laser pulses have an average shape closely related to the probability density function associated with the surface profile. This result is applied to estimate the mean sea level and significant wave height from the receiver output of the laser altimeter

    The effects of random path fluctuations on the accuracy of laser ranging systems

    Get PDF
    The precision of satellite ranging systems, limited in part by atmospheric refraction and scattering, is examined. The effects of atmospheric turbulence on the accuracy of single color and multicolor ranging systems is discussed. The statistical characteristics of the random path length fluctuations induced by turbulence are examined. Correlation and structure functions are derived using several proposed models for the variations of the optical path length. For single color systems it is shown that the random path length fluctuations can limit the accuracy of a range measurement to a few centimeters. Two color systems can partially correct for the random path fluctuations so that in most cases their accuracy is limited to a few millimeters. However, at low elevation angles and over long horizontal paths two color systems can also have errors approaching a few centimeters

    Timing performance of phased-locked loops in optical pulse position modulation communication systems

    Get PDF
    An optical digital communication system requires that an accurate clock signal be available at the receiver for proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. Timing errors cause energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. A timing subsystem for a satellite-to-satellite optical PPM communication link is simulated. The receiver employs direct photodetection, preprocessing of the detected signal, and a phase-locked loop for timing synchronization. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical calculations

    Loads and aeroelasticity division research and technology accomplishments for FY 1985 and plans for FY 1986

    Get PDF
    The Langley Research Center Loads and Aeroelasticity Division's research accomplishments for FY85 and research plans for FY86 are presented. The rk under each branch (technical area) will be described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest
    corecore