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L. INTRODUCTION

In a recent report we developed and summarized the basic equations
describing speckle noise in satellite based lidar svstems [1]. The
speckle noise power in direct detection syvstems was found to be a com=
plicated function of the electrical characteristics of the receiver
electronics, receiver aperture size and shape, laser pulse shape,
laser radiation pattern and characteristics of the scattering medium. In
this report the speckle noise will be evaluated from some tvpical lidar
gvstems., The governing equations, which were developed in [1], are summarized
in the remainder of this section., In Section IT the mutual intensity
function of the speckle pattern is calculated in terms of the laser
radiation modes. Typical laser pulses are modeled in Section III, and in
Sections IV and V simplified expressions ‘or the speckle noise power are
derived. The signal=to=-speckle=noise ratios for some proposed lidar svstems
are evaluated in Section VI.

The variance of the signal at the output of the receiver illustrated

in Figure 1 can be written in the form [1]

)

{1 P 4

var(§) = SE(S) + X E7(S) (1-1)
MM,

where E(S) is the average signal. The first term on the right-hand side

of Equation (I-1) is the shot noise component, while the second term is

the speckle noise component. The magnitude of the speckle noise is

affected by the size of the telescope aperture, bandwidth of the receiver
electronics and polarization characteristics of the signal., In Equation (I-1)
P is the degree of signal polavization (0 < P < 1), My Is the effective

number of spatial correlation cells seen bv the receiver aperture, and M.

is the effective number of temporal correlation cells seen bv the receiver's
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electrical filter. MS and MT depend on the characteristics of the signal

mutual intensity function j\ which in most cases is separable.

f 3 )2

L[ 3g(0) | [ eN(p) )
, Sae's o o

[a7el3g(0) | "R, (D)

.

L 9p€0) [R(0) [ drehix))

» v '2 2
Lo drldp (@ "RI(0) R (D)

4
-

R, (0)
[ deh(r)

F "

R(p) = | 472 W) We(g + )

) o

Rp(r) = } dt P(t) P(t + 1)
Rht:) = j de h(t) h(t + ) .

(1-2)

(I-3)

(1-4)

(I=-0)

(I-7)

(1-8)

W(r) is the receiver aperture weighting function, P(t) the laser pulse shape

and h(t) the impulse response of the receiver's electrical filter.
and Rh are their associated autocorrelation functions. The expression

for MT is valid only for particulate scattering. For rough surface

scattering the laser pulse has no effect so that M, becomes
-

R

p
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l|3’T<0):L_dzh(r)}

M, = . (1-9)

L:d1:3T(1)52 Ry (1)

Closed form expressions for M, and MT are usually difficult to calculace

)
when typical system functions are substituted into Fquations (I=3) and (I-4).
Therefore, it is sometimes convenient to consider the limiting expressions

when Ms and MT are large. Hs is approximately one when the receiving
aperture diameter is small compared to the spatial correlation length of
the received signal. When the aperture is large, MS can be approximated by

the formula

e 13 2 .
3 ey Jg? e
Mg O el

Similarly, HT is approximately one when the bandwidth of h is large compared
to the temporal coherence bandwidth of the received signal. When the
bandwidth of h is small, MT can be approximated by

r,"” ]. v 0 12 2 0
L, dth(t) 14p(0) ™ R5(0)

TR O

ey =% . (I-11)
Ledt]I (0] RO(T)

Goodman [2] has shown that the spatial component of the mutual intensity
function is related to the intensity discribution which illuminates the

scattering medium. If we denote by E(r,z) the complex optical signal

.‘“ 2
incident on the scattering volume, then IJS[ is given by

‘1‘ “‘ I,"! | 2 :." :2
LJS(E)L- | [d"0|E(g,2) | " exp(i =L 9

& o e g D . (1-12)
[75€0) |° FERAACTE

N

13

\ is the signal wavelength and z is the distance from the scattering medium



to the receiving telescope. Equation (I=12) i{s valid in both the Fresnel
and Fraunhofer scattering zones previded the microstructure of the
scattering medium is unresolvable by the receiving telescope.

For a coherent laser source, the temporal component of the mutual
intensity function is related tc 'he statistics of the fluctuations in the
velocity of the scattering particles. If the particle velocity fluctuations

v
are Gaussian, 'JTIZ is given by [1)

T
[ aga - 2/0) R&v(E)‘] : (1-13)
J

Rsv is the velocity correlation function. The Gaussian assumption is valid
for Brownian motion and for turbulent flow which may be found in clouds

and smoke plumes. It is interesting to evaluate (I-13) for the limiting
cases where t is either large or small compared to the velocity correlation

time. If we let T denote the velocitv correlation time, (I-13) becomes

r flw\: )
A > eXp | = | = <WUv™> 1% t << ¢
|32(0) | kL
Toe— = % g
[ Jo(0) |
: f I’w,]z "“ !
AXD | = .: AR | - 3 . Sy =
\ ’ l LA ! Jod” Rav! ‘, v o*

For particles suspended in a turbulent flow, the velocity correlation is

"
usually quite long (v ms) compared to the observation time so that IJTTZ

takes on the Gaussian form. The velocity correlation time is usually
iy
negligible for Brownian motion and ia this case |J_ |° takes on the

exponential form which gives rise to the familiar Lorentzian spectrum.

Tor rough surface scattering the temporal coherence time of the

scattered signal (tc) is determined by the source coherence time (fs‘\.
-



B
L]
For scattering by an ensemble of particles, T, may depend both on the

source coherence time and the inverse Doppler linewidth of “.he scattering
L
molecule (rd) (1].

The Doppler linewidth is given by [6)

Lo sl = 2y, /—;'!El 1n 2 (1-15)
id Hc-

where

center frequency of radiation

k = Boltzmann's constant
T = temperature (°K)

M = mass o1 the molecule

¢ = velocicy of lighet.
For T = 300°K, Ty becomes
\O'AtI wtl
Tl 1 e (1-18)

whaire At. Wt., = the atomic weight of the scattering molecule.

When scattering from resonant molecules.t_ 1is equal o . When the

c

scattering mechanism is Rayleigh, Yo becomes
x (+°17)

In the following Sections M_ and MT are evaluated for typical lidar

S

system functions. Effects such as high-order laser modes and annular

receiving apertures are considered.
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IT. LASER MODE EFFECTS ON “s’
%
In Cartesian coudinates the Propagation modes of laser radiation are

described by the we ll=known Gauss-Hermite functions [3),

( )
Em(x.)’.z) = 3(z) Hm-lu’ff} H + 41y j (II-1)

n { b )(:5 * R mn
2 2 [ .1 A:]’]
w (2) 'uo 1 4"‘—"5' (I1=2)
| Tw |
L)
{ 0~ 2]
| 9o
R(z) = 2 |1 ¢ |0 , (11-3)
T
t J
) z =12z ) :
;mn(z) (m+n+ 1) tan i;zfl ; (IT=4)
( 9

The field distribution given by (Ii=1) corresponds to the IEan mode., & ig
4 complex function independent of x and ¥, Hm 18 a Hermite polynomial and
“0 is the beam radius of the fundamental mode at z = 0. The far-field

divergence angle of the fundamental Gaussian mode {s

:‘ T — . (II-S)

Equations (II-1) - (II~3) correspond to the case where the beam is
collimated at the 2 = 0 plane. For situations where the laser is not
collimated, the origin of the z-axis mnst be shifted and “ adjusted {in
Equations (II=1) - (II=3) to give the correct phase front curvature and
beam radius at the laser coordinates {3].

The spatial component of the mutual intensity function can be calculated

for an arbitrary mode by substituting (II-1) into (I-12) and integrating (4



) L) ’ v 2

Je(p)|° F 2.8 22 | ( 2

—— e L '%xz] L [—;’3' ?2]'“9;-[5-“-'] (x2+y2)} (11-6)
g | Bla%* | %1% [ | v

where I.|n is a Laguerre polynomial., Equation (II-6) will be used in the

following sections to evaluate the effects of high-order laser modes on the

speckle statiscics.



ITI. LASFR PULSE EFFECTS ON Rp

To evaluate MT it is necessary to obtain a functional expression for
P(t), the laser pulse shape. If the pulse is symmetric in time, it may be
possible to approximate it by a Gaussian distribution, while the Gamma
distribution can often be used to represent asymmetric pulse shapes.

Both the Gaussian and Gamma disctribution pulses are completely
characterized by the full width at halfe-maximum (FWHM) and by the time
coordinate at which the peak occurs (TP). Fortunately, these two parameters
are also easy to measure in the laboratory. Hcowever, since optical
detectors respond to intensity, Pz(t) is the function that is usually
measured. Thus, it is necessary to fit the distribution to the pulse
intensity profile, and then take the square root to find P(t), the pulse
amplitude.

For a Gaussian-shaped pulss2, we let

2 2
-t“ /21
P(t) = e P (I11-1)
2n T
where
T m b (FWHM) = 0.425(FWHM) . (I11-2)
P V8§ 1n 2
For a Gamma distribution pulse, we let
(" el
;ﬁ tb e-“ t >0
P(t) = { (I11=3)
0 otherwise
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where
mean = [“ dt t P(t) = EﬁE.L (I11-4)
‘0
( 1/2
RMS width = ‘[w de ¢ P(t) - (maan)z . :'1 (III-5)
1’0 J
peak = TP = b/e . (III-6)

Although it is possible to determine b and c¢ from the mean and RMS

width using Equations (III-4) and (III-5), these parameters are not as

easily measured as Tp and FWHM.

f
s
== FWHM
R ln 2 T 60
p
b = < Figure 2 1.1 < £¥Eﬂ <5 (I11-7)
P
( r )2 —
(8 1n 2) §ﬁ§§| e < 2.8
K l J P
= b/T . I1I-8
¢ /T, (I1I-8)

For the Gaussian distribution the autocorrelation function is given by

¥ 3
1 -t" /4t
R (t) = e P (111-9)
? 2VT T
P
R_(0) = ——2 (117-10)
P 2477 ¢
)

and for the Gamma distributionm the autocorrelation function is [5, p. 322

-
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b+3/2 [ ¢ ] b+l/2
R (t) &« ———————— | = (ct) (ITI-11)
P /3 T(b + 1) (2) Kb*l/Z
(b + 1/2)
R_(0) » £ 234 (IT1-12)
P 2/ b +1)

where Kb+1/2(ct) is a modified Bessel function.
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IV. EVALUATION OF MS FOR TYPICAL SYSTEM FUNCTIONS

"
A. IJqf Caussian, W Caussian

D

As seen in Section I, M, is dependent on the receiving aperture weighting

function, W(r), and the spatial component of the mutual intensity function,
.")
Jstg). [t is instructive to consider the case for which both the aperture

and mutual intensity functions are Caussian, since this is one of the few

cases that a closed=form expression for MS can be derived exactly.

The Caussian form for the mutual intensity is given by

R | 2 N 3
Jg(e)|®  =r/20°

et R : (1v=1)
'JS\O)

where o is the transverse spatial coherence length of the signal. The
¢

spatial coherence length can be expressed in terms of the transmitter

divergence angle, or in terms of the laser spot radius (see Section [1).

P (1v=2)
e 5 al
¥ 4 1\,T
o @ =t . (IV=3)
. v nmw(z)

JT is the laser transmitter divergence angle and w(z) is the radius of
the laser spot at the scattering medium. As given in Equation (II-2),

the spot size is
(IV=4)

*
S
| &
il
res

lol

=3
[
L)

where % is the beam radius at z = 0,
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The Caussian receiver aperture is modeled as

P |
W(r) = g " /R (IV=3)
where R is the receiver aperture radius. The receiving aperture auto-
correlation is given by
2 2,2 2
NORE Dt (1V=6)
"
For W and !Js[ Caussian, Equation (I-3) for Mg becomes
Mg = 1+ R%/0% (1v-7)
[N
From Equation (I-10), the large aperture approximation for MS is given
b
) ¢ AN 3
{Id gw(g)] 13g(0) |
H.. - - £ A . (Iv-s)
For large values of R/cc. MS is large, and Equation (IV-8) gives
2, 2
Mg =R/ . (IV=9)

v
B. IJSQ Gaussian, W Annular

In general, W(r) will be a circular annular aperture as in a

Cassegrain telescope. Let R1 be the outer radius of the aperture, R,

-

the radius inside which the aperture is obscured, and vy = R,/R1 the

obscuration ratio. To evaluate Ms. it was necessary to numerically

integrace Equation (I-3). Plots of MS versus RI/:- are given in Figure 3

for v equal to zero and one-half. From Equation (IV-8), the large .‘IS

approximation becomes

2 2
Rl(l -y)
HS 2 —— (IV=10)

[ ¥

-
-

]
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Since the receiver aperture weighting function for annular apertures is
that W = 1 inside the aperture and W = 0 outside the aperture,
W(r) = wz(g). Thus, R,(0) = deEF(:) so that the large aperture
approximation for Ms (Equation (IV=8)) simplifies to
fdzgﬁ(g}

M, 3 = = S (IV-11)
fd'gle(_g)/Js(O) g

In this case Ms is just the ratio of the receiver area to the effective

area of the square of the normalized mutual intensity function.

C. Large Aperture Approximation for Arbitrary Laser Modes

Although it was not possible to obtain an exact expression for MS
for an arbitrary TEan transverse mode, it is nevertheless quite useful
to evaluate the large Ms approximation for the TEan mode.

Referring to Equation (IV-8) for large M.s» in Cartesian coordinates,

S
it is necessary to evaluate f} dx dv!J /J (0)

square of the mutual intensity function is given by Equation (II-6).

For the TEM mode the
mn

v & T 12 | ]

|3 (2) | “ S & T 2 re 13

2 ol |58 4 Ln",“‘q 1 { !-'"—“J (’{q+y’)i :
Jooyl”= ' R | { xop® f " ’ y AR |
St ‘. ) : i \ )

(IV~12)

The two spatial dimensions may be separated, vielding two integrals of the

form
y2
gu=s ,[ |..:: 1\:l | = : ‘]
F dx | L. | === %x"|]| exp|(=|—! =x"| . (IV=13)
Y
| L | m \ e ® 'l L12) |
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and expanding one of the Laguerre polynomials into the form (5, p. 1037)

(- n“il d }Y;.- - (1v-14)
m=-kj '

-8

L lv:) =
" k=0

Y
With another change of variables u = v, Equation (IV=13) becomes
: [ =] AP »
%& L (= n* | i%- %-J du o172 L, () e - (IV-15)
k=0 lm—kJ : -

The integral in (IV-15) can be found in [5, p. 845], vielding the result

’- ﬂfp ® | \_; .2 ,“222 2
}-‘J-“ dx dy le/Js(O) = ——TM.' T SN (1V-16)
where
[ EET
- im = 2k Ek]
e 0 - | | (1V-17)
2" km0 2°° | m-k | | K J
)\
»
a " 73 L, 7K | : (1V-18)

Thus, for any TEan transverse mode, the integrated mutual intensity
is scaled by Yo and Yy compared to the Gaussian case (VO = 1). The total
integrated mutual intensity can be expressed as the sum of the integrated
intensities of all transverse modes present, each scaled by the appropriate
L and vn." However, if the mode structure of the laser transmitter is

unknown, the Gaussian mode will give the worst case estimate for M_, since

5

a higher order mode will result in a reduced integrated intensity and

consequently an increased Ms. Tabulated values of Y are given below.

4

%*
This assumes that the transverse modes are statistically independent.
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TABLE 1. TABULATED VALUES OF Yn

"m

1.0000
. 7500
. 6406
«3742
«5279
.4930
L4653
L4426
W4235
+4070
3927
. 3076

i 2381

L
COO0OWER®NOWMEWNE~D

If we insert Equations (IV-16) = (IV=18) into Equation (IV=-8), the

large MS approximation for a Gaussian aperture and TEHmn mode becomes

R°

=
S D2 5 Y“

Cc

M

. (IV=19)

Similarly, the large Ms approximation for an annular aperture and TEan

mode vields

M i A, (IV=20)

The results are summarized in Table 2.



TABLE 2. SUMMARY OF M, RESULTS

19

- |
wig) g2 Mg
Exact I Large Ms Limit
Gaussian Gaussian 1+ Rzloz Rzlo2
Equation (IV=5) Equation (IV=1) ¢ ¢
L Ra-vh
Annular Gaussian Figure 3 i . gty
20
[
R2
Gaussian TEth - 3
Equation (IV~12) ¢ Ym'n
|
| R2(1 - v%)
Annular | TEMm - P 3 T
i ’ c'm n

R = Gaussian aperture radius

Rl = outer radius of annular aperture

v = obscuration ratio of annular aperture

L#]

= transverse spatial coherence length of signal (Equations (IV=2)
and (IV=3))

and Y, * the integrated intensity scaling factors for the TEan mode

(Equations (IV=-17) and (IV-18) and Table 1).



V. EVALUATION OF MT FOR TYPICAL SYSTEM FUNCTIONS

Referring to Equation (I-4) for M., we need to know what functional
forms ‘ET(:) , P(t), and h(t) will assume for realistic systems. It was
shown in Section I chat i} " will usually have Gaussian or exponential
_form. and in Section III t P can be represented by the Gaussian or
Gamma distributions, Ti. electrical filter h(t) will usually be un
integrator or ideal low-pass filter; however, it is also useful to consider

the Gaussian low=-pass filter.

2"}
A. P Gaussian, |Jp| Gaussian

Insight mavy be gained as to how these parameters interact by con=-

sidering the case where they are all Caussian.

| A | 2
RRC IR T

"_1.‘__ = e (V-1)
30)]
2..2
of /&7
P(t) ® —t— ¢ P (V=2)
V2 TP
2/9,2
2 -t /22
RO(t) = =2 e (v-3)
P .
ant
2.2
h(t) » ¢ F B (V=4)
" 2
N . L e
\h t ':Be (V=2
Ry() = (v-6)
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" de hit) = /=/B (v=7)
f -
tc is the speckle coherence time, tp is the laser pulse width, and B is
the filter bandwidth.
Inserting (V=l) = (V=7) into Equation (I=-4) for MT vields

1 1 ‘UZ

"T —!—2- —2— . (V=8)
\ P

We find that HT is inversely related to the filter bandwidth, pulse widcth,
and coherence time. The large HT approximation (Equation (I=-11)) is given

by

v
[

(¢ = 3 2 .2
[_.dt h(t)) [32(0) |7 RZ(0)

. .
" A (9) [_delipo® R

(V=9)

Using (V=I) = (V=7) for all Gaussian functions, Equation (V=9) becomes

: 1/2
T (V=10)

|
lr.
\'p

o |

MTI

-4
) Hl"‘

MT can also be evaluated exactly for thu cases where JT and P are

Gaussian and h is an ideal low-pass “ilter or integrator. For h an

integrator, we have

1 lt] < 1/28
h(t) = (V=11)
0 otherwise
1/8 = |¢el lt| < 1/8
Ry(e) = (V=12)
' 0 otherwise

R, (0) = 1/B (V-13)
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»
( dt h(c) = 1/8 , (V=14)
-
Note that 1/B is the integration time. For convenience, we will define

the parameter /.

, 1/2
v e % :-% + -1-2 . (V=15)

T  §

LP c)

Then, using Equations (V=11l) = (V=15) and Equations (V=1) = (V=3) for

P and 'jri Gaussian, MT is given by [5, p. 306)
2
M b /2 . (V=16)
Va2 v erf(y/2) + exp(=¢~/2) = 1
where erf(x) is the error function. For large v, MT is large, and
Equations (V=9) and (V-16) become
M, k=, (v=17)
van
For the case in which h is an ideal low-pass filter, we have
1 '€l < B
h(f) = (V=13)
0 otherwise
RH(:) = h(t) = 23 sinc 2Bt (V=19)
Rh(O) = 2B (V=20)
k-
[ dt h(c) = 1 (v=21)

-

where B is the filter bandwidth. Equation (I-4) for MT contains the
integral of the product of a Gaussian and a sinc function, which can be

evaluated to obtain (3, p. 493]
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(4/2/37) exp(21°/4%)
[y (1,1.5,20214%)

MT - (V=22)
where lFl is a hypergeomatric function. For large ¢, Equations (V-9) and
(V=22) become

e (v=23)
*r 227

N
Plots of HT versus y for ;Jrl and P Gaussian are preseanted in Figure 4 for
tha cases where h i{s an integrator, ideal low-pass filter and Gaussian

low=pass filter.

i
B. P Gaussian, iJT. Exponential

~
Now we consider the case in which P is Gaussian, :JT! is exponential,

o
and h is Gaussian. :JT| is given by

2
J I
hid IS (v-24)

IJ (0)[
where t  1s the speckle coherence time. [nserting (V-14) and (V-2) - (V=7)
into E£quation (I=-4) for MT' we obtain the integral of a Gaussian multiplied

by an expoaential. This can be evaluated [53, p. 307], and MT is given by

(V=25)

where erfc(z) = 1 - erf(z) is the complementary error function. For large
HT. Equation (V=9) contains the integral of the product of a Gaussian and

an exponential, which becomes (3, p. 307]
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1
HT = - (V=210)
Bt
pQ
where the funct. m Q {8 given by
2 Y
11 = T |
Q= exp-"j% erfe —7:1——l . (V=27)
Srf‘ 22 1

Q is plotted versus rp/rc in Figure 4, For large rp/zc. Q becomes approx-

imately equal to

Q = £ . (V=28)

For small !p’!.. Q is approximately equal to one.
(™

|
r |

an integrator, we insert Equations (V=21), (V=3), (V=11) = (V=14), and

\
For the case in which P is Gaussian, |J is exponential, and h {is
(V=24) into Equation (l=4) for MT' Completing the square in the exponent

and making a change of variables gives two integrals of the form

)

L -
“ du e (V=29)
uy
U, -u:
[ = du ue § (V=30)
J
%

Equation (V=29) results in the difference of two error functions [5, p. 306],
while (V=30) is an exact differential. After considerable manipulation,

we obtain the result



I ) 3 ) ]
Pl ' Br !r'l { | [ ) r )
HT o Vin Br |1 ¢ :?Ll cxp;-J%¥ ferf = + 'f | - erf -132—-'
& TR IR ¢ t |VZ Br, 27t 2V « J
LU e) 4 p ¢ e
[ 3
" 9 | =
- JB"E; expl-—;l-—,, - -'_BLT“] -1 . (v=31)
¢ gt sl el
\ P )

For large MT‘ Equation (V=9) again is the product of a Gaussian and an

exponential, which {s evaluated to vield
(V=32)
Al 9 —
where Q = exp(:BfSr:) erfc(rp/l‘l t ) and is plotted in Figure 5 versus
| &

.“"
For P Gaussian, ;JT

Equation (I-4) for MT becomes

| exponential, and h an ideal low-pass filter,

-t t | sin 2Bnt

| =3 ) : de E (V=33)
0 &% v

L \ p :

Equation (V=33) must be integrated pumerically to obtain exact values for

2 jra
L
-
-

My, =

- f 2 ) |

M.. However, Equation (V=9) for large M, can still be evaluated to give
T -

o Tt (V=34)

g ) Y o
where again Q = exp(r;’Sr'_') erfc(r‘.’.\_‘ t ) is plotted in Figure 5 versus
w 1 G
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C. Large MT Approximation for P(t) Modeled by a Camma Distribution

When P(t) is represented bv a Camma distribution (see Section III),
exact values of MT must be obtained by numerical integration. However,
the large MT approximation can be manipulated into a relatively simple form.
For most system resolution requirements, h will be slowly varying
compared to the pulse width and coherence time. Consequently, we may use
Equation (V=9) for large MT and treat the dependence on h as a separate

factor., Equation (V=9) can be written as

M = by H% (V=35)

where
[/ =ae newr)?
‘} (0)'° : 0)
1< RO(
' = T P fen
My (V=37)

s ® " ¢ I
j_ﬂdtlJT(t)" R;(:)

Values of M for a Caussian low-pass filter, inisqrator, and ideal low=-

pass filter are tabulated below.

TABLE 3. TABULATED VALUES OF i

h(t) { 11

s i

e
Gaussian low=-pass filter i v2n/B

f
Integrator 1 1/8

Ideal low=-pass filter | 1/28



When P(t) is represented by a Gamma distribution, Equation (V=37)
must be integrated numerically. But we are able to obtain closed-form
expressions for M+ whenever either the pulse width or coherence time is
short. If rp € T s IETIann be evaluated at zero and removed outside the

integral in Equation (V=37). Then H% becomes

R%(0)
My —_— (V=38)

[ lae Ri(t) ‘

For P(t) Gamma, Rp(t) is given by Equation (III-11), so that Equation (V-38)

vields

rJ

+i+
o
R N

e i+ 1/ (2
&4

= ) (V-39‘
2/ (b + 1) r

M =

——
12

where b and ¢ are related to the peak and width of the laser pulse using

Equations (III-7) and (III-8).

2
If LI << Tp. R;(t) can be evaluated at zero and removed outside the

integral in Equation (V=37). Then M% is given by

‘M !'1
JR(0) 7
Mo = 3. . (V=40)
J’_mdt EJT(tM
1f IJTi {s Caussian, Equation (V-40) becomes
M = — . (V=41)
iz'T T
c
1f ‘JI! is exponential, Equation (V=40) becomes
ML o2 —= (V=42)

T QT.

~



The results for HT are summarized in Table 4, and functional forms

used to evaluate HT are given in Table 5.

30
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TABLE 5. FUNCTIONAL FORMS USED TO EVALUATE HT

| v \ 9 :
Function 5 P(t) | ,JT(t)/JT(O)T' ; h(t)
i |
f
b PP | 30,48
-t" /2t -t /2t ; aon?
Caussian -_-1—- e P j 2 o ot
Yémn ¢
P
! -
[ | l
| J ce™* t>0 | -le) /2t |
Exponential ! ; e | e
i 0 otherwise -
- —
| g |
Ideal Low=-Pass Filter | o= i .- . 2B sinc 2Bt
|
‘ ) |
‘ : |
L t - | - | 1 el s . S
ntagrator | | v - 2B
; 0 otherwise
; i | |
Gamma 1 sl :be-c: £>0 t
Distribution i F(b+l) l ;
. i | =

0 otherwise:

1

t = coherence time of received signal

1
L]

laser pulse widcth (Equation (III-2))

w 9
"

bandwidth of electrical filter

b and ¢ = parameters which characterize the Camma distribution.
(Equations (III=4) = (III-8))



VI. SIGNAL-TO-NOISE RATIO FOR REPRESENTATIVE LIDAR SYSTEMS

To evaluate the quality of lidar data for a given system, we must

evaluate the signal-to-noise power ratio (SNR), which is given by [1]

“
E(S)°
var(s) + Var(Ny) °

SNR =

Under strong signal conditions, the signal speckle nolse dominates and

the SNR becomes

2
sxn-—i\&—q- :

(1 + ™)

A summary of the SNR calculations for various svstems (s given in
Table A, For these svstems it was assumed that the laser is transmitting
in the fundamental Caussian mode, the received field is polarized in one
component, the pulse is Gaussian, the electrical filter is an integrator,

and the obscuration ratio of -ie circular receiving aperture is 0.25,
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