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1. INTRODUCTION

Laser ranging systems have developed to the point where it may now be
possible to measure the distance from an orbiting satellite to a point on the
earth with uncertainties on the order of only a few centimeters. The precision
of satellite ranging systems will be limited in part by atmospheric refraction
and scattering. In this paper the effects of atmo;phefic turbulence on the
accuracy of single color and multicolor ranging systems is discussed. The
statistical characteristics of the random path length fluctuations induced
by turbulence are examined. Correlation and structure functions are derived’
using several proposed models for the.variation of Ci with altitude. FPor single
color systems it is shown that the random path length fluctuations can 1limit
the accﬁracy of a range measurement to a few centimeters. Two color systems
can partially correct for the random pz;th fluctuations so that in most cases
their accuracy is limited to a few millimeters. However, at low elevat;on angles
and over long horizontal paths two color systems can also have SrTors approaching

a few centimeters.



2. RANDOM PATH LENGTH FLUCTUATIONS

2.1 Theoretical Backgroand

Refractive ‘index fluctuations caused by atmospheric turbulence will
induce random variations in the optical path length. The magnitude of these
path length variations can be estimated from the theoretical analyses of
optical phase fluctuatioas published by Tatarski [1] and othex workers. The

instantaneous path diviation AL can be predicted using geometric optics

AL 2 fdr m (). )
. C

oy is the fluctuating part of the refractive index about the mean value and

C is the ray path. If random variations in the ray path due to n; are neglected,*
C will be determined by the average refractivity. The average path deviation

is zero because the average value of n; is zero

<AL> = fdr <my(x)> = 0. (2}
C

The covdriance between the deviations along two different paths can be

written in terms of the refractive index covariance

~

By, = dryf drp <my(z1)ng(xz)>. (3)
C Co ;
We will assume that the refractive index is isotropic and its covariance is
given as the product of a function depending on the magnitude of the difference
coordinate and another function depending on the average coordinate
NP
<ny(x1)m) (£2)>=B (—5 I8 (|r1 - ). (4)

o]

B measures the correlation between the fluctuations at points r; and r, while

<

Bh measures the strength (variance)} of the fluctuations. When the paths are

identical (C; = Co)}, (3) gives the mean-square deviation.

* 1t can be shown that variations in C due to n, will increase the optical path
length by at most a few nm.



Two different path. geometries will be considered in this paper (Figure 1).
The angular path sepération would be éncountered with a stationary ranging site
and a moving target such as a satellite. The parallel path separation would be
encountered when the ranging site and target are mofing in the same direction
at identical speeds or when both site and target are stationary and there is a.
uniform wind blowing transverse to the path. To simplify the problem we will
éssume that the propagation paths are straigﬁt lines. Refractivity gradients
in the atmosphere will cause the actual propagation paths to deviate from a
straight line by as much as a few meters, particularly-along the satellite path
at low elevation angles. However, the deviation will only be significant_at
the higher altitudes where B; is small. Hence, the error will also be small.
For horizontal paths, the curvature is negligible.

The parallel path covériance is calculated by substituting (4) in {3) and
noting the geometry in‘Figﬁre 1

L L

. 1
B, (@ = 4 [dry far, BY(Fo=2) B) [((z1 - 12)2 + a9)"]. (5)
O o}

The constant 4 appears in equation (5) because we are considering a complete
"roundtrip' between the ranging site and target. Equation (5) can be rewritten

in a more convenient form by making the change of variables (r; + r,)/2 = £ and

(r1 -T2} =0p

L L-p/2 v ' o , ol
B, () =8 édp iﬁé B (8) B [(p® + d®)7]. (6)

The correlation length of the refractive index fluctuations is on the order of
the outer scale of turbulence, Lo’ If the path length L is much larger than
Lo’ the upper limit on the p integration can be set equal:to infinity and the
£ integration can be extended from 0 to L

L o C g
By (d) = 8 ida B> (&) gdp B> [(p2 + d2)7]. &)
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Figure 1. Geometry of the laser ranging site and targets.
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The error introduced by this approximation is on the order of ﬁ?’“

Bg can be conveniently described in terms of its spatial spectrum
0 _ o 5 -0 sin(Kr) -
B (r) = 4n idK K28 (K) 5. i . (8)

The modified von Karman spectrum is commonly used for @3

-K2/K2

O(K) ne m
) = : -

n (1 + k221176
o]
K = 5.92/8 . (9)
L3 .

o =2 T(11/6)

7372 T(1/3)

where o is a constant chosen so that BE(O) =1 ana 20 is the inner scale of
turbulence. The von Karman spectrum appears to be adequate under conditions
where the low frequency behavior of the spectrum'is unimporani. However, the
random path variations are predominantly influenced py~refractive index
perturbations in the spectral input range (Kj?ﬂ/Lo). Therefore, our results

will be developed in terms of an arbitrary @ﬁ so that the effects of different
spectra can be studied. Substituting (Sj in (7) and carring out the p integration

gives
2 L v = 0
B, (d) = 16n gdg Bn(g) idK Ke (K) J_(Kd). ' (10)

Another statistic of interest is the structure function for the path
deviation. It is defined as the mean-square path difference and can be

written in terms of BAL

L .
D, (d) = 2[B, (0) - B, (d)] = 32 gdg Bx(g) £dK K@E(K) [1-J Ka)].
(11)



When the path separation is small, the structure function is not sensitive to
the low frequency behavior of @E.
Similar expressions can be derived for angular path separations. Noting

the geometry in Figure 1 and substituting (4) in (3) we obtain

L L
v (ro*ry) ) o NZen2 . . L
B, (¢) = 4 gdrl gdran = cos{$/2)] Bn[((rl rz) cos?(4/2) (rl+r2)251n2(¢/2)) 1.

(12)
Equation (12) was derived from (4) by assuming that B; is a function of the

average of the projections of r; and r, onto the bisector of the angle ¢. By

making the change of variables

££1%£21c05[¢/2) = £
(13)
(r1-12)cos(¢/2) = p
and extending the p integration to infinity we have
. L v o o} e
By () = __ 8 fag'B_ (&) fdo B [(p? + 4g%tan®(4/2))7]. (14)
cos?(¢/2) o 0
It is most convenient to write the covariance in terms of the refractivity ’
-spectrum. .Substituting (8) in (14) and integrating over p gives
1672 " o] - L v
By, (9) = 557072y gdx K¢ (K) {)da B (£) J [2KEtan(4/2)]. (15)
The structure function for the path deviation is
SRV TN 3, [2Ketan (¢/2) ]
D, (8 = 327 gd_K Ko (K) £d:—; B (8) I[1 - T EICYE) (16)



~

Tﬁe path deviation statistics for both parallel and angular path
separations are summarized in Table I. These statistics were derived assuming
that the refractive index correlation length L0 was much smaller than the
total path length L. In this case the path deviation given in equation (1) is
the sum of many statistically independent values of the refractive index. The
central limit theorem can be used to argue that AL is Gaussian distributed.
Thus, the correlation functions in Table I provide a éomplete Qtatisticdl
description of the Gaussian random variable AL for the path geometries
considered. In the following sections these statistics will be evaluated for

typical atmospheric parameters. =



Covariance

Structure
Function

Covariance

Structure
Function

TABLE I

Path Deviation Statistics

Parallel. Path

L | =
v (o]
i6m2 fdg B (&) deKtI)_n(K) T (Kd)

Bap(d) = 75 ;
' L v i g o]
Dy (@) = 3202 Ofdg B, (&) odeann(K][l - J,(Kd).]
Angular Path
B (#) = —25T— faxxe® (0 fag 8 3126 tan (3/2)]
c052(¢/2) ) n o n °

© Lo J (2Kg tan (9/2))

D, (9) = 32n% fdKKe (K) fdg B)(£) [L -~ = ]

0 o cos?($/2)



2.2 RMS Path Deviation and Correlation Function
The mean square path deviation can be calculated using the covariance
functions by setting d or ¢ equal to zero in (10) ox (15)
L v ® g
<a12> = 16%% fdE B_ (&) fdx Ke_(K). (17)
0 0
The refractive index variance, Bz, is related to the turbulence structure

parameter [ 2]

3/27(1/3)

Voo il /3
B (r) = o.osscﬁ(r) TCI1/6)

2/3 _ 5,123
L/” = 0.525 ()L’ ", (18)

It is convenient to write the path deviation in terms of the structure parameter

at the ranging site and an effective path length, Le’ defined as
1
L, = ngﬁT édE Cﬂ(E)- (19)

The mean-square path deviation for the von Karman spectrum (eq. (9)) is

4872

<ALZ> = 0.033 C2(0) LS/3 L = 3.127 Cz(o)LS/sL
- n- n (6] e

5 o - e

(20)

The rTms Eath deviation is plotfed in Figures 2 and 3 as a function of Ci for
several values of Le and Lo'

For horizontal pathg the structure parameter will be essentially constant
so that Le is equal to the average path length L. Measurements by Bufton [3,4]
have shown that turbulence exhibits a layered- structure as a function of altitude.
Except for a sharp peak near the tropopause, the stricture parameter also exhibits
an overall decay with increasing altitude (Figures 4 and 5). This decay roughly

follows an exponential model [4-6]

/h

c2(h) = Cﬁ(o)e_h s (21)



RMS DEVIATION (mm)

10' k-

10°
!(f)z

: lo"l
107

- 0?
Lo=50m

T T

1

ICF3 | : ] i l

om  Im c2(m?3

Figure 2, Rms path deviation given by eq. (20) for the von Karman spectrum. C2 is the
refractive index structure constant, L, is the outer scale of turbulbnece and
Le is the effective path length in turbulence defined by eq. (19).
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where hS is the atmospheric scale height and h is the altitude. hS is typically
on the order of 2 to 5 Km. Then for satellite ranging the effective path
length is
Le = hscscw o (22)
where  is the satellite elevation angle. ‘LO also varies with altitude. Values
frequently used for L0 are about 100 ?eters or 1/3 to 1/5 the\height above ground,
whichever is less. For satellite ranging 100 meters should be used for the
. value of LO.

The path déviations are predominantly influenced by the input. range of

the refractivity spectrum (Kﬁéﬁ/Lo). To investigate the §ensitivity of the path

. s o e
deviations to the form of @n, the mean-square deviation was calculated for the

following spectrum

-K2 /K2 ~ ’
QO(K)G_EN_~__E_ (23)
n (1+K2L2)u
o
oo T(1/3)T(u-1) 48w2 _5/3
WL = e T 3/2) [O'OS%EEFO) —— L7 L]
= Jh-1) 2/3 e
= 742 557y CZ(0) L"7L .

The ratio of the rms deviation for arbitrary u to the deviation for u=11/6 is
plotted in Figure 6. As p increases, more of the energy is concentrated in the
low spatial frequencies for a fixed value of the refractive index variance. This
effectively lengéhens the tail of the refractive index covariance function wﬁich
increases the rms deviation.

The parallel path correlation function cdn easily be calculated by substituting
(23) into (10) and integrating over K. If inner scale effects are neglected (i.e.

let Km=w‘in (23)) the correlation function can be evaluated in closed form

R (d) = B, (d)/B, (0) = 2 dyw-ty & (25)
AL T TAL AL T T-D (LO p-1 "L

where Ku-l is a modified Bessel function.
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The correlation functions are plotted in Figure 7 for several values of u.
When p increases, the correlation tails increése as expected. The deviations
on the two paths are essentially uncorrelated when the separation is on the
order of Lo. The effects of the inner scale of turbulence are illustrated in
Figure 8 where the corrélation funétion‘is plo%ted for u = 11/6 for several
values of KmLoZ KmLo is typically greater than 103 in the atmosﬁhere so that
inmer scale effects can be neglected.

The angular path covariance function is more difficult-to evaluafé because
it depends on the detailed behavior of the atmosPhgric structure parameter. For
satellite ranging we will use the exponential model for Ci given in (21).
Brookner [5] has proposed a more complicated form of this model which includes
a component to describe the tropopause contribution. Unfértunately the‘use
of his model leads to considerable mathematical aifficulties in calculating
the angular correlation function. For this reason we-will use the simpler
model given in (21) which does give a fairly accurate description of C2 [4,5].
In the following section Brookner's model is used to study the path structure
function and is compared with the model in (Zi).

-

Using (21) the angular covariance function is given by

!CS(O)hS S . o -1
B, () = —2 [dK Ko (K) [1 + K2p2tan2($/2)} ° (26)
AL 2 n - 5
cos<(8/2) o .
where
o = 2h_csc(P+¢/2). (27)
¢ is the initial elevation angle of the satellite (See Figure 1).
If the spectra given in equation (23} are used, the angular correlation
can be written in terms of a hypergedmetric function [7] )
R (¢) = Pt W-l) R, 1, uel, 1- °s tan2 (¢/2)) (28)
aLtd) = B (0) ~ CosZ(4/8) w1/ 210H LowrE it :
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The path deviations are essentially uncorrelated when

_, L siny L siny
p=2tan ! () == ¢ . (29)
s S 5

The correlation angle ¢S is at most only a feéew degrees. ” When ¢ is on the
order of or less than ¢s’ the cosine factor in (28) can be set equal to one
and the tangent approximated by the first term in its Taylor series expansion.

In this case the angular correlation function becomes

(p-1)

Ry (8) = gy 2F1Cs 1, wels, 1-4%/43) (30)
. - Losin¢
s h_

The correlation functions given by (30) are ﬁlotted in Figure 9 for p=3/2,
11/6, and 5/2. Whenu increases the correlation tails also increases,

It should be pointed out that the path fluctuations on the satellite-
earth path are nonstationary. Because the mean-square path deviations depend
on the satellite elevation angle ¢ (see (20} and (2%)), the rms-path deviations
will change as the satellite passes over the ranging site. The correlation
functiog also depends on the satellite position since P and ¢0 dare functions
of ¥. The path deviations decorrelate within a few degrees of angular
separation. In the regién of small ¢, Py will be essentially constant so that
the effects of nonstationarity on the correlation function are negligble.

For large ¢ [>10°), the nonstationary effects must be considered by using

equations (26) and (27) or (28) to calculate the correlation.
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2.3 Structure Functions

The structure functions can be evaluated directly from the covariance
by using the relation in equation (11). In this section we will compare the
structure functions calculated using the von Karman spectrum with functions
calculated using a new spectral model proposed by Greenwood and Tarazano [8].
The new model was derived empirically from atmospheric microtemperature
measurements by varying parameters until a best fit to the tempeféture
structure function data was obtained. Greenwood and Tarazano's (G-T)

proposed spectrum is given by

-11/6

o 272

& o« L<+KL 3

o (K) = (K2L2+KL, ) (32)
It is plotted in Figure 10 along with the von Karman spectrum.

It is most convenient to calculate the normalized structure function

because of its relationship to the correlation functions

D,  (d)

Al
T (e = 1-R {d). (33)
DAL( ) AL

When d is small compared to the correlation length, the structuﬁe function

is relatively insensitive to the low frequency behavior of the refractivity
spectrum. In this region’fﬁe structure function yields detailed information

about the behavior of the main lobe of the correlation function. This information
can be used to describe angle-of-arrival fluctuations and path variations across
the receiving telescope aperture. In multicolored ranging systems, each

frequency will traverse a slightly different path to aﬁd from the target

because of dispersion in the atmosphere. The péth fluctuations at each

frequency will alsq be slightly different. The structure fumctions can be

used to estimate these differences so that their effects on ranging accuracy

of multicolored systems can be analyzed.
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Figure 10. (a) Spectral model proposed by Greenwood and Tarazano [8],
eq. (32) (b) The von Karman spectral model, eq. (9).
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Using the von Karman spectrum the parallel-path structure function is

given by
iy - 1= ey . &
AL o 0
The asymptotic behavior for d small with respect to LO is
Dy (d<<L) T(1/6) d.5/3 _ d .5/3 X
= — ) = 1.864(7)7 7. (35)
D, () 2°7°r(11/6) o

When 4 »>> L0 the asympotote is of course 1. The intersection of DAL(d << LO)

and DAL fd << Lo) is at
d = 0.688Lo. (365

The structure function is plotted versus d/LO in Figure 11.
When the G-T medel spectrum is used, the structure function cannot be
expressed as simply as before. Following Greénwood and Tarazano's [8]

approach we write D,, in terms of confluent hypergeometric functions

AL

(37)

17 a

wfde U(1/6, -2/3, ~iy—cos6)
[»)

Dpp(d) o

DpLl™)

1- u(1/6, -2/3,0)

The derivation of {37) is detailed in Appeﬁdix A where the first term of the

power series.expansion in %u-is also evaluated. The small d asymptote is given by
)

Dap(d << Lg) o g.2003¢d55/3 (38)

)
T
Dy °

and the intersection of DAL(d << Lo) anq DAL(d >> Lo) is at

d = 2.56Lo. (39)
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Figure 11. Parallel path structure functions. (a) von Karman spectrum,
eq. (34). (b) Greenwood and Tarazano spectrum, eq. (37).
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Equations (38) and (39) are considerably different from the corresponding
results for the von Karman spectrum ( (35) and (36) ). This is illustrated in
Figure 11 where the structure functions for both the von Karman and the G-T
spectra are plotted. The structure function increases much more slowly with
the G-T model. This indicates that the corresponding correlation function has
a much longer tail, The effect results because.there is more energy im input
range of the G-T model (see Figure 10).

These results are interesting because of their implications regarding

the mean-square path deviations. The mean square deviation calculated using

the G-T model is given by

_ Zw%r(l/é)
G-T =~ T(5/6)

4872 5/3

2 2rmy 487° '
<AL2> [ 0.033C2(0) =~ 12/” 1_ ] (40)

e
= 26.31 ¢2(0) L33 1
n O e

The rms deviation calculated for the G-T model is approximately 3 times grééter
than the corresponding results for the von Karman spectrum. Because the G=T
model was derived emperically from actual atmospheric measurements we believe
that (40) represents a more realistic value for the mean-square path deviations
than the results obtained from the von Karman spectrum. The rms deviations for
the G-T model can be obtained from Figures 2 and 3 simply by multiplying the

values by

2570 (1/3)

% o (41)
(Te/ey ) = 29
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The structure functions for the angular path depend on both the refractivity
spectrum and the behavior of Ci. If Ci is described by the exponential model

given in (21), the structure function can easily be calculated from (30) with

= 11/6
D, (4
AL 4 5 1 _ $2/¢2
] D\AL(T\') 1 8 zFl(z’ 1, 7/3, 1 ¢ ¢S)' (42)
The small angle asymptote is
PaLl® << %9 | r(/&I)r(a/3) 815/3 ;5 goactyS/3 43
D, (m T'(33) b ’ % : i
and the intersection of Dy (¢ << ¢g) and D (¢ >> ¢) is at
¢ = 0.539 L (44)

Equation (42) is plotted in Figure (12).

When the G-T spectrum is used, the angular structure function can be
derived from the parallel path structure function given by (37). The calculations
are detailed in Appendix B and plotted in Figure 12 along with the corresponding

results for the von Karman spectrum. The small ¢ asymptote is

DAL(¢ << ¢S)
DAL(F)

= 0.315 (i—)s/3 - (45)

S

an§ the intersection of DAL[¢ << ¢s) and DAL(¢ >> ¢.) is at
¢ = 2.00 ¢5. (46)

The anguiar structure functions also increase more slowly when the G-T model
spectrﬁm is used. These results imply that the path deviations do not decorrelate
as rapidly as might be expected with the von Karman model.

Brookner [5] has proposed a more complicated version of the exponential

model for the variations in Cﬁ with altitude
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Figure 12. Angular path structure functions. (a) von Karman spectrum,
eq. (42). (b) Greenwood and Tarazano spectrum, eq. {(45).
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CZ(h) = ¢2_hnP ¢W/D
n ng

s + C_o 8(h-h) “n
hs is the atmospheric scale height which in general is different from the hS
employed in (21). The parameter b ig chosen depending on the conditions, and
Cﬁo is specified so that Cﬁ(h] is in m_2/3 when h is in meters. The second
term in (47) is the tropoause contribution. hT is the tropopause height and
C;T is the integral of Cﬁ(h) under its péak at the tropopause. When b and
C;T are zero, (47) reduces to the model given in (21). Brookner suggests a
value of 320 m. for hs and 12 km. for hT' The model given by (21) requireé hs
to be on the order of 3.5 km. l

When Brookner's model is used, the covariance and strﬁcture function

separate into two terms. To illustrate, the angular correlation function

is derived in Appendix C for the von Karman spectrum using Brookner's model

2
for Cn(h)
C+
R, () = ——— 8~ _F (s-b/2, 1-b/2, 7/3-b, 1-$2/¢2)
(C_+C ) 21
n nT +
C -
¢ g (870> % o (4/07) , e (48)
(c+Cc ) !
n aT
where
5 Lb .
¢s = 5—51n¢
s
(49)
L .
qu = HET siny

. . . + + .
and B and B are constants defined in Appendix C. Cn and C,p are the integrated
1 .
contributions due to the lower atmosphere and tropopause respectively. In this
case the path deviations are characterized by two distinct correlation angles. The

tropopause correlation angle o is generally much smaller than the lower atmosphere

correlation angle ¢s. Consequently, there is an initial rapid decorrelation as ¢



approaches $ipe Thé correlation then saturates at a value approximately
equal to C;/(C;+C;T) until ¢ approaches ¢S. Then the correlation decays
to zero as the deviations due to the lower atmosphere .decorrelate.

This effect is nicely illustrated in Figures 13 and 14 where the
correlation and structure functions are plotted. We have used the parametef
values suggested by Brookner in reference [5]. The values were selected by
Brookner to obtain a best fit of the model to data published by Hufnagel [9].
In all cases the initiai decorrelation (increase of the structure function) is

dominated by the tropopause contribution.

It should be pointed out that even Brookner's improved model is
still an approximation at best. Bufton's [3, 4] data which was collected
during the dawn-dusk minimum periods show a highly layered structure to the
turbulence. Based upon the results from Brookner's model, we might expect
the strongest layers to each have an associated correlation angle so that

the structure functions would be even more complicated than those illustrated

in Figures 13 and 14. The initial decorrelation will probably be determined
by the highest layers near the tropopause.

The effects of turbulence on laser ranging systems will be
most apparent on sunny days when the turbulence is strong. The G-T
spectrum predicts rms deviations approaching a few centimeters {eq. (40)
and (41) and Figure 3). 1In this case the lower atmosphere-is the major
source of the path deviations. Significant decorrelation will occur
only when the separation approaches the lower atmosphere correlation angle
¢S while “the initial decorrelation will still be determined by the

tropopause (Figures 13 and 14).
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Figure 13. Angular path correlasion function calculated using Brookner's [5]

improved model for C. (h) given in eq. (47). (a) Sunny day.
(b) Clear night. (c? Dawn-dusk minimums. . .
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Figure 14-a. Angular path structure function calculated using Brookner's [5]

improved model for C2 (h) given in eq. (47).

(b) Clear night. (c] Dawn-dusk minimums.

(2) Sunny day.
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Figure 14-b. Angular path structure function calculated using Brookner's [5]
improved model for 2 (h) given in eq. (47). (a) Sunny day.
(b) Clear night. {c) Dawn-dusk minimums.
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3. EFFECTS OF PATHS FLUCTUATIONS ON RANGING ACCURACY

The statistical characteristics of random path length fluctuations were
derived in the previous section. In this section the effects of path fluctua-
tions on the accuracy of single color and two color ranging systems are

examined.

3.1 Single Color Ranging Systems

The optical path length for a roundtrip between the ranging site and

target is given by

L= Jdrn (D) + fax my (@) =<1> + L ' (50)
C C

<L>is tﬂe average path length which is determined by the average refractivity
(no) along the ray path. AL is the instantaneous random path deviation caysed
by fluctuations in the refractive index (nj). AL is Gaussian distributed and
its statistics were derived in Section 2.

When a range measurement is made, L is the parameter that is actually
measured. Formulas are available (e.g. ref. [10-12]) which can partiérly
correct the measurements for the effects of the aver;ge atmospheric refraction.
Since AL is random, it is not possible to correct the measurement for the
effects of turbulence. AL represents a fundamental limit in the accuracy of
single.color ranging systems.

The rms value of AL was calculated in the previous section and plotted
in Figures 2 and 3 for typical atmospheric parameters. Figures 2 and 3 are
based on equation {20) which was derived for the von Karman spectrum. These
results probably represent a conserative estimate for Qers. The rms
deviation was also calculated using a new spectral model proposed by Greenwood
and Tarazano [8). The G-T model gives a value for AL approximately 3 times

larger than the results for the von Karman spectrum. Because the G-T model
i
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was derived emperically from actual atmospheric measurements of the temperature
structure function, we believe that it gives a more realistic value for the
Tms path deviations.

When the structure parameter follows the exponential model in (21} the
effective path length in turbulence Le is given by (22}. ‘Lo and hs~are on
the order of 100 m and 3 km respectively. Under these conditions the rms path
deviations can be up to a few centimeters when the satellite is at low elevation
angles (~10°) and the turbulence is very strong (C% 10713 w2/3) | Under most
conditionsACE will be much weaker (10-15 m‘2/3) so that rms deviations will
be a few millimeters or less.
| It is possible to reduce the effects of the path deviations by averaging
many different range measurements. The amount of reduction depends on the
correlation between the path deviations on each measurement. If the path
deviations are stationary and n measurements are averaged, the residual rms
deviation is given by

1 AL (51)

=]

where AL o is the deviation on 2 single measurement and P33 is the
correlation between the path deviations on ith and jth measurement. If the
measuremént; are statistically independent, the fms defiation is reduced b}
the factor'l//?r.

The path deviation correlation functions were derived in Sectlon 2 (see
Figures 7 and 9 ). For satellite ranging the path deviations decorrelate
when the angular separation is on the ;raer of.¢§ = %9 siny. The time
required for the Lagoes satellite to move an angular gistance ¢S is on the

order of tens of seconds. Typical laser ranging systems are capable of
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making many measurements within this time peried. When the correlation between
successive measurements is high, the sumﬁations in (51) can be approximated

as integrals. .To see this, let the angular velocity of the satellite as viewed
from the ranging site be constant and denoted by w. The averaging operation
can be written as an integration

T
dt AL(¢=U+wt) (52)
0

AL
avg

thﬁ

T is the length of the time interval over which the measurements are averaged
and ¥ is the satellite elevation angle on the first measurement at t=o. The

mean square value of the integral is given by

<AL2 7 =2 fdt (1-t/T)B, (¢ = wt) (53)
J AL :
Equation (53) can be rewritten in terms of the refractive index spectrum

tan(wT/O)

- ban? IdK k2% (K) Jas 5 V) fdx(l-'—(tan"l){) 5 (KD, (58)

<AL2

(54) was derived by substituting (15) into (53) and making the change of
variables x = tan (wt/2). Notice wT is the total angle over which the measure-
ments were averaged.

The ratio of Aers for the a;eraged measureménts to Aers for a single
measurement is plotted in Figure 15 as a function of wT. The results were
calculated using the angular’corpelation function given in (28) for u = 3/2,
11/6 and 5/2., This corresponds to thg spectral medel given in (23) for @E
and the expontential model given in (21) for B:. There is suprisingly little
reduction even when the measurements are averaged ove£ 10 correlation angles.
This is due primarily to the long tails on the angular correlation functions

(see Figure 9). The effects of wind were not included in the derivation
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Figure 15. Ratio of the rms path deviation for time-averaged measurements
to the rms deviation for a single measurement. w is the
angular velocity of the satellite as seen from the, ranging
site, T is the averaging time and ¢S is the correlation angle
(eq. (30)). The results we calculateéd using the spectral model °
given by eq. (23). .
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of the correlation fumctions in the previous section. Wind motion transverse
"to the propagation path will tend to decorrelate the path deviations more
rapidly when the wind velocity is in the direction opposite the satellite motion.
When the wind velocity is in the same direction as the satellite'motion, the
path deviations tend to remain correlated much longer. Figure 15 was derived
assuming no wind and probably represents an average of these two extreme cases.
Wind motion will be important only when the transverse speed V, is large
enough to blow a turbulent blob of size L across the propagation-path during
_the integration time, i.e. if T 2 Ls/VL. The wind speed in the lower atmosphere
is typically on the order of a few tens of meters per second. Therefore, the
results in this section apply for iﬁtegration times from a few seconds to about
1 minute.
Equations (52} and (54) can be simplified if we assume that the integration
time is long compared to the correlation time (i.e. wT>>¢s). In this case t/T
will be small over the important range of integration and can be neglected in
(52). The upper limit on the T integration can be extended to‘w/@‘since BAL
is negligible when T>>¢s/m

m/w

1
2 ~
<ALZ. > T fat B!L(¢

=wt). (55)

Similarly, if wé neglect the dependence of B; on ¢ (Bﬁ is evaluated for the

elevation angle ¥ + ¢/2), the term i%—taﬁlx can be neglected in (54) and the

upper limit on the X integration can be extended to infinity

o0 L

3272 ) -y oV
2 - 1 X
<12, > 2 gdK 3> (K) ode TLRE - (56)

Equation (56) can be used to obtain estimates of the residual path deviations
when the measurements are averaged over many correlation angles. However,
since wind was also neglected in (56), the results sti%l apply only for

integration times less than about 1 minute.
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gimilar results can be obtained for horizontal propagation paths using
the parallel path correlation functions. If the ranging site and target are
stationary, the path separation d is replaced by V,t where V, is the transverse
wind velocity. The wind velocity is assumed to Eeluniform along the propagation
path. If the ranging site and target are moving in the same direction at
identical speeds, V, is their transverse velocity. The mean square deviation

of the averaged measurements is

ALZ > = 3272
. avg T

L oo ) T
fdE B (&) [aKKaO(K) fdt(1-t/T)T_(KV,t). (57)
o o) [¢]

When T is large compared to the correlation time LO/VL_(57) simplifies to

2 L3 Fv P .
g T VT ({dg Bn(g)(de 3 (K) . (58)



38

3.2 Two Color Ranging Systems

A significant improvement in ranging accuracy should be possible if two
laser frequencies are employed instead of -one. The difference between the
refraction at different wavelengths can be used to eliminate, to a great extent,
the effects of atmospheric refraction on the range measurements [13-15].

The technique entails measuring the range at two frequencies. The difference
in range at the two frequencies is a measure of the refractive conditions
existing over the propagation path at the instant the measurements were taken
and can be used to improve the accuracy of the range measurements.

Because the two color system effectively measures conditions along the
actual propagation path at a given instant, the system can also correct for
the random path deviations caused by turbulence. However, dispersion and_
refractivity gradients transverse to the propagation path will cause the two
color paths to separate slightly. Since the turbulence on the two paths will
only be partially correlated, path separation reduces the effectiveness of
the two color system in eliminating errors due to random fluctuations in
atmospheric density along the propagation path. This may represent a fundamental
limitation in the accuracy that can be obtained with two color systems. The
problem boils down to determining how well the integrated atmospheric density
along the two color paths is correlated.

Let Ly and L, be the measured ranges at wavelengths Ay and A,. The actual

range L is given by [ 13 ]

[
!
=
[a]
]
L
-
—
1
ot
L=
[

or (59)

=
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-
+
s
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:j>'"

L L)
|
o
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where Anyo and AL;, are the differences between the refractive index and
measured path length.

Since the two laser beams will traverse §1ight1y different paths in the
. atmosphere, the fluctuations on the two paths will be slightly decorrelated.

Consequently, AL;, and AL,; will have a mean square error of

<[AL(A1)-AL(X5)1%> = 2(1-p;,) <ALZ> (60)

Py is the correlation coefficient of the path fluctuations and <AL?> is the
mean square deviation on a single path.

The correlation coefficient can be calculated from the angular correlation
function. Young [ 16 ] gives an expression for angular path separation as a
function of the elevation angle ¢y and the differential refractivity at the
ranging site

¢ = Anjy, cot ¥ . {61)

Equation (60) is actually the angular structure function defined in {16).
Since the differential path lengths are multiplied by the.coefficient in (59),
the rms error in L caused by partially correlated path fluctuations is given
by

_n-1 _ ]
error An FDAL(¢‘AH cot ¥} ] ) (62)

The angular path separation can be decreased by decreasing An, i.e. by
choosing the two frequencies close together. This decreases the value of the
structure function and reduces Lerfor' However, the coefficient (n-1)/An will
be increaged and this tends to increase the error. The dominant behavior of
Lopror 25 2 function of An can be determined by noting that An cot § will be

small compared to the correlation angle ¢S. The structure function can be

approximated by the first term in its power series expansion to give (Sec. 2.3)
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cot ¢]U/6

= (an)-1/6 (n-1) B1/2 (——% (63)

L oT
err S

where B is a constant dependlng on the refractivity spectrum and C2 proflle
The overall error decreases as An increases. It is therefore desirable to
make An large by ch0051ng a large frequency difference.

The error reduction provided by a two color system can be estimated from

equation (62) and the normalized structure functions plotted in Figures 12 and 14

: b, . (¢=An cot ¢} ,
erYoT _ 3 (TQS) [ AL }5 - (64)

AL
TS DﬂL(“)

Aers ié the Tms deviation for a siﬁgle frequency path. The ratio in equation
(64) is plotted in Figure 16 as a function of the elevation angle ¥. The two
color system is assumed to use the fundamental and frequency doubled ocutput

of a lase? operating in the near infrared or visible wavelengths (A, = 1 to .4y,
A2 = A1/2). Equation (42) (Figure 12} was used for the normalized structure
fuimction. At the low slevation angles near.10° the two color system shows
little improvement over the single color system. For elevation. angles over

30°, the two color system should provide at least an order, of magnitude
reduction in the path deviations.

Similar results would be obtained if the structure functions plotted in
Figure 14 were used in (64). Figure 14 is based on Brookner's improﬁed C%
model (eq. (47)}). If the Greenwood and Tarazano spectrum is used to calculate
b L (curve b in Figure 12), the ratio in (64) is approximately 1/3 times the
values given in Figure 16. Thus, the results in Figure 16 probably represent
a lower bound fo? the expected improvement of two colof systems over sinéle

color systems.
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Ratio of the rms path deviation for a two-color system
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P is the satellite elevation angle. The results were
calculated for ?\1 = 2?\2 and apply to the case where

0.4u < Ay < 1.



For horizontal propagation Thayer [15] calculated the average separation

between two line-of-sight rays with common endpoints,

<Ah> = (65)

A2

.

) f
where L is the actual range. The error reduction provided by the two color

'system can be estimated using the parallel path structure function

L (d=<Ah>)
error . .% (n-1) AL
AL =27 e D, (=) ] (66)

Equation (66) is plotted in Figure (17) using the structure function giﬁen by
(34). The outer scale of turbulence is on the order of 1 to 10 meters for
propagation near the earth's surface. The two color-system offers significant
improvement over the shorter paths (<5 km). However, on the long paths where
the path deviations can be large, the tw9 color system shows little improve-
ment over a single color system.

It should be noted that (66) gives only an approximate value for the

42

ratio. The two color paths are not parallel; they are more closely approximated

by circular.arcs where <Ah> is the average arc separation. In (66) we have
assumed the arc structure function can be approximated by the parallel path

structure function evaluated at the average arc separation.
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4, CONCLUSIONS

Atmospheric turbulence will introduce errors into distance measurements
through a number of mechanisms. The most important is the random vatriations
in the optical path length. The statistical properties of the path deviations
were derived in Section 2. The rms path deviations will be typically a few
millimeters or less. However, when the turbulence is strong (C§ v10'13 m~2/3)
the deviations can be as high as a few centimeters.

It is possible to reduce the effects of the path deviations by averaging
many different range measurements. Unfortuantely, the amount of reduction is
limited by the long tails of the path deviation correlation functions. A
substantial reduction in the deviations will be obtained only if the measurements
are averaged over many correlation times (>10, see Sec. 3.1 and Fig. 15).

Two color systems can ;iso be used to improve ranging accuracy. The
difference between refraction at different wavelengths can be used to correct
the range measurements for the effects of atmospheric refraction and turbulence.
Qver the shorter horizontal propagation paths 10 km) and at tﬁé.higher elevation
angles (>300), the two color systems can reduce the error caused by turbulence
to a fraction of a millimeter or less. Over the léng paths and at low elevation
angles where the path deviations can be significant, the two color system will not
perform much better than a single color system. In fact, thé two color ;ystem
can have a larger error in some cases (see Fig: 16 and 17).

The random path fluctuation5 caused by turbulence represent a fundamental
limitation in the accuracy of both single color and two color ranging systems,
When the turbulence is(strong and the effective propagation path long, both systems
can experience ranging errors approaching a few centimeters. When the turbulence

is moderate or weak, the errors will be a millimeter or less.



APPENDIX A

Evaluation of DAL(d) for the Greenwood and Tarazano Spectrum

The parallel path structure function can be calculated from equation
(11}

D, (d) = aoj’dK chg(K) [1-J (Xd)]. (A-1)

The integral in (A-1) is evaluated by rewritting the Bessel function in

integral form and substituting the G-T spectrum (eq. (32)) for @ﬁ

~-11/6 iKd cos e) (A-2)

T =5}
de [dK K-S/G(-KLO +1)
0 0

5 |

DAL(d] = g! (L-e

The. K integral can be expressed as a confluent hypergeometric function [ 19 ]

- @T(176)

i3 .
Dy (@) = Sg7e [Wass, 275, o -1 [aeu1/s, -2/3, -i 1 cos0)]

o 0

] (A-3)

Since Jo(Kd) + 0 as d » « the normalized structure function is given by

1 40 . d
Dy (@ . FOfde u(1/6, -2/3, -i —L—n—cose) - )

D) U (1/6, -2/3, o)

When d/L0 is small U can be expanded in a power series [20 ]

D, _(d) © m+5/3 2(m+1)

AL 5 o (4 + b (L ] (A-5)
D . (=) oomLy m Lo

AL m=0
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Where

- r(11/6)r(-2/3)

T(1/6)T (8/3)

_ T(11/6)T(-2/3)

T{1/6)T (8/3)

T(11/6)T(-2/3)

r(1/6)r(8/3)

_ I{(11/6)T(-2/3)

I'(1/6)T (8/3)

T {11/6)T(~2/3)

. ! T )
2 fde (-i cose)>® = 0.2093 .
s}

T(1/6)T(8/3)

111 [ .. 8/3
T !de {-i cosf) / = 0.1844
T 11/3
222 fde (-icos® = -0.0404
kil o N
-7
(z3) = -0.2188
13%19 I(5/2).2 ]
g 351 = 0.0302

(A-6)
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APPENDIX B

Evaluation of the Angular Structure Function

When the angle ¢ is small, the cosine in (16) is approximately one and
the tangent can be approximated by its argument. In this case the angular
structure function DAL(¢) cah be written in terms of the parallel path

structure function DAL(d)

L o
D, () JAEB(E) [ Ke2(K) [1-7 (K¢D)]

DALY

L
)
LJdE B (8)

L A
_ oJ35 B (8) Dy (45 ) | .

L Y
oJdE B (8) Dy (=)

The power series expansion of DAL(d)/DAL(w) for the G-T spectrum was derived

in Appendix B

Dyp,(4)

D

© qg.m+ 5/3 d 2(m+1) : i
=mzo [amgigg + bm(zga 1. (B-2)

The values of the first few coefficients {a_} and {b,} are calculated in

Appendix B. After substituting (B-2) into (B-1) we obtain
o m+ 5/3 L

= ¥ GH Jde &

D,. (w) m=0 0

AL

D,; () m o+ 5/3 oV

NG

L
» " ez £ 5. (B-3)
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If an is described by the exponential model given in (21), (B-3) becomes

D,. (4) @
AL - Z[am T(m+8/3) (¢/¢S)m+5/3 2(m+l)]

D AL {7) m=0

+ b T(2n+3) (#/4)

(8-4)
L sin 9 "

where 9, = The small ¢ asymptote is given by the first term
- hS
in the series

D, ©<<$)

L 5
AL = e aren) 6 )P = 0.315 (070 0% (8-5)

Dy, ()
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APPENDIX C

Evaluation of the Angular Correlation Function

To evaluate the angular correlation function using Brookner's model
for CIZ1 (eq. (47)), we start with equation (B-1) in Appendix B and relation
(33) to obtain

L
v .
C (o - ,Jd& B (&) Ry (d=E@)
AL L v
Jd& B, (&)

(C-1)

The parallel path correlation function calculated using the von Karman

spectrum is given by (25) with u = 11/6

21/6 d 5/6

d
Ryp(d) = — (= K., ().
AL r(5/6) Yo 5/6'L,

(C-2)

For Brookner's model, the integrated contributions of Cﬁ due to the lower

atmosphere and the tropopause are defined as

=

+ _ ® 2
C +Co= dfdh G (h)

n
(C-3)
fdh c2, nb eh/hs G2 h, (1-2) 1 (1-p)
o
Using equations (C-2),(C-3) and (47) in (C-1) gives
+ 1/6
C - 27" Tcscy o L 5/6
RAL(¢) = — L - du ube u (‘bi'u) K5/6($¢—u)
(Cn + CnT) T(1l-B) T(5/6) o S s
o 176, 5/6
o 1T 2 %s/6% >, (C-4)

+ + ET_
(¢} + Gy Ts/6) T
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where ¢s and ¢T are the lower atmosphere and tropopause correlation
angles defined in (49). The integral in (C-4) can be wiritten in terms of
a hypergeometric function using the integral relation given in Gradshteyn

and Ryzik [17] and the transformations given in Abramowitz and Stegun [18].

The resulting expression for the angular correlation function is

+
R, 6) = —B—— 8 F (s-b/2, 1-b/2, 7/3-b, 1- #/p2)
AL + + 0 1 s
(€, * Cyr) 2
+ . -
CnT 5/6
e B /)7 Ky g (8/4), b<l (C-5)
c +c.) ! .
n nT
where .
6 = Jr r(8/3-b): 1
©  r(s/6y T(7/3-b) 2°/5P (C-6)
1/6
B = 2

1 r(5/6)
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