46 research outputs found

    Synthetic Biology Toolbox, Including a Single-Plasmid CRISPR-Cas9 System to Biologically Engineer the Electrogenic, Metal-Resistant Bacterium Cupriavidus metallidurans CH34

    Get PDF
    Cupriavidus metallidurans CH34 exhibits extraordinary metabolic versatility, including chemolithoautotrophic growth; degradation of BTEX (benzene, toluene, ethylbenzene, xylene); high resistance to numerous metals; biomineralization of gold, platinum, silver, and uranium; and accumulation of polyhydroxybutyrate (PHB). These qualities make it a valuable host for biotechnological applications such as bioremediation, bioprocessing, and the generation of bioelectricity in microbial fuel cells (MFCs). However, the lack of genetic tools for strain development and studying its fundamental physiology represents a bottleneck to boosting its commercial applications. In this study, inducible and constitutive promoter libraries were built and characterized, providing the first comprehensive list of biological parts that can be used to regulate protein expression and optimize the CRISPR-Cas9 genome editing tools for this host. A single-plasmid CRISPR-Cas9 system that can be delivered by both conjugation and electroporation was developed, and its efficiency was demonstrated by successfully targeting the pyrE locus. The CRISPR-Cas9 system was next used to target candidate genes encoding type IV pili, hypothesized by us to be involved in extracellular electron transfer (EET) in this organism. Single and double deletion strains (ΔpilA, ΔpilE, and ΔpilAE) were successfully generated. Additionally, the CRISPR-Cas9 tool was validated for constructing genomic insertions (ΔpilAE::gfp and ΔpilAE::λPrgfp). Finally, as type IV pili are believed to play an important role in extracellular electron transfer to solid surfaces, C. metallidurans CH34 ΔpilAE was further studied by means of cyclic voltammetry using disposable screen-printed carbon electrodes. Under these conditions, we demonstrated that C. metallidurans CH34 could generate extracellular currents; however, no difference in the intensity of the current peaks was found in the ΔpilAE double deletion strain when compared to the wild type. This finding suggests that the deleted type IV pili candidate genes are not involved in extracellular electron transfer under these conditions. Nevertheless, these experiments revealed the presence of different redox centers likely to be involved in both mediated electron transfer (MET) and direct electron transfer (DET), the first interpretation of extracellular electron transfer mechanisms in C. metallidurans CH34

    Comunicación, cultura y discursos mediáticos en la Argentina de ayer y de hoy

    Get PDF
    Este proyecto dirigido por los doctores Eduardo Romano y Aníbal Binasco, Directores de la Maestría en Comunicación Cultura y Discursos Mediáticos, se propone contener y encausar los trabajos de tesis en proceso de los maestrandos más avanzados de dicha maestría. Esta condición le otorga un carácter muy particular al proyecto ya que en él convergen temáticas diversas pero que también tienen un punto de anclaje en común. Eso está incluido en el título del proyecto que, por una parte, responde a la problemática general de nuestra maestría y por otra, les brinda a nuestros maestrandos la posibilidad de investigar en temas, géneros y dispositivos comunicacionales en la cultura argentina del pasado (especialmente el siglo XX) y en la actualidad. Una tendencia que se ha hecho notar en este proyecto PROINCE es el interés de muchos maestrandos por las nuevas tecnologías y su incidencia en el proceso de la comunicación, en el del aprendizaje, en el del consumo cultural a través de nuevos soportes tecnológicos, etc. Esto no ha impedido, tampoco, que otros maestrandos prefirieran estudiar cuestiones del pasado, la radiofonía durante la década de 1950, el sutil entramado entre una telenovela exitosa y el fenómeno de la responsabilidad social. También la difusión periodística de las novedades científicas en diferentes medios gráficos fue motivo de otra tesis de maestría. Ha entrado en su etapa final una tesis sobre la extensión del sensacionalismo de los considerados diarios “populares” a los diarios “serios”. Todos estos logros fueron más factibles desde la incorporación de los maestrandos a este proyecto.Fil: Romano, Eduardo. Universidad Nacional de La Matanza; Argentina.Fil: Binasco Droughan, Aníbal Alejandro. Universidad Nacional de La Matanza; Argentina.Fil: Carrasana, Laura. Universidad Nacional de La Matanza; Argentina.Fil: Spina, Guillermo. Universidad Nacional de La Matanza; Argentina.Fil: Domínguez, Gastón. Universidad Nacional de La Matanza; Argentina.Fil: Escribano, Daniel. Universidad Nacional de La Matanza; Argentina.Fil: Garavaglia, Florencia. Universidad Nacional de La Matanza; Argentina.Fil: Ravera, Federico. Universidad Nacional de La Matanza; Argentina.Fil: Ruíz, Marysa. Universidad Nacional de La Matanza; Argentina.Fil: Tognolotti, Jorge. Universidad Nacional de La Matanza; Argentina.Fil: Tomaro, Sergio. Universidad Nacional de La Matanza; Argentina

    Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment

    Get PDF
    VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved residues within the C terminus of the VAMP2 SNARE motif. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms. The genetic synaptopathy caused by VAMP2 de novo mutations highlights the key roles of this gene in human brain development and function

    Méthode SCHADEX de prédétermination des crues extrêmes : Méthodologie, applications, études de sensibilité

    No full text
    Since 2007, EDF (Électricité de France) design floods of dam spillways are computed using a probabilistic method named SCHADEX (Climatic-hydrological simulation of extreme foods). This method aims at estimating extreme flood quantiles by the combination of a weather patterns based rainfall probabilistic model and a conceptual rainfall-runoff model. The aim of this PhD thesis is to “validate” SCHADEX method by assessing its potential and its limits with a sensitivity analysis of its hypothesis and with a comparison to the widest possible range of data (various regions and climates, different watershed sizes). In the first part of this thesis we describe the stochastic generation process of rainfall events. We introduce a rainfall probabilistic model based on weather pattern classification, called MEWP (Multi-Exponential Weather Pattern) distribution. To validate the MEWP model, we compare it to the standard probabilistic models of extreme values theory. Basing on a wide rainfall dataset (478 raingauges located in France, Switzerland and Spain) and on new specific criteria, we evaluate the suitability of MEWP model in terms of reliability and robustness. In the second part of this work, the hydrological simulation process of volumes, called semi-continuous simulation process, is introduced. We highlight the efficiency and the originality of this process link to its ability to mix various hydrological data for extreme flood estimation while keeping parsimonious extrapolation hypothesis. Basing on a dataset of 32 watersheds, we realize a sensitivity analysis of this process to (i) simulation parameters (i.e. number of simulation, etc.), (ii) to rainfall probabilistic model and (iii) to rainfall-runoff model. This study allows us to fix some simulation parameters and especially to prioritize the simulation steps and options by their impact on final results. The third part is about the passage from extreme volumes quantiles to extreme peak flows quantiles that is done by a peak flows ratio. This ratio is computed on a hydrograms sample that is extract from flood time series by a specific peak over threshold sub-sampling developed in this thesis. Globally, we reformulate, justify and verify the basic assumptions of the method, with a special focus on rainfall risk, hydrological risk and semi-continuous simulation process. In order to make extreme flood estimations more reliable and robust same improvements and simplifications of the method are proposed. To widen the available period of the weather pattern classification from 1953-2005 to 1850-2003, we computed another weather pattern classification based on shade geopotential information. To take into account precipitation-temperature dependency, the simulation process is improved conditioning the generation of rainfall events by weather pattern sub-sampling. Certainly this thesis does not put the end to SCHADEX method developments but ground it on sound and documented basis. Such future investigations about variability of shape flood hydrograms, comparison of hydrological model in extrapolation domain, extreme flood risk estimation on ungauged watershed and in non-stationary context, are planned.La méthode SCHADEX (Simulation Climato-Hydrologique pour l'Appréciation des Débits EXtrêmes) est, depuis 2007, la méthode de référence pour le calcul de la crue de projet servant au dimensionnement des évacuateurs des barrages d'EDF (Électricité De France). Cette méthode vise à estimer les quantiles extrêmes de débits par un procédé de simulation stochastique qui combine un modèle probabiliste de pluie et un modèle hydrologique pluie-débit. L'objectif principal de cette thèse est la « validation » de la méthode SCHADEX, la compréhension de ses possibilités et de ses limites, notamment par des études de sensibilité aux hypothèses sous-jacentes et par sa confrontation à la plus large gamme possible d'observations (régions et climats contrastés, taille variable de bassins versants). La première étape de ce travail a porté sur la description probabiliste des événements pluvieux générateurs de crues, avec notamment l'introduction d'une distribution des pluies observées conditionnée par type de temps (distribution MEWP, Multi-Exponential Weather Patterns). Pour valider ce modèle probabiliste, nous avons comparé ses résultats à ceux de modèles classiques de la théorie des valeurs extrêmes. En nous appuyant sur une large base de données de stations pluviométriques (478 postes localisés en France, Suisse et Espagne) et sur une technique de comparaison orientée vers les valeurs extrêmes, nous avons évalué les performances du modèle MEWP en soulignant la justesse et la robustesse de ses estimations. Le procédé de simulation hydrologique des volumes écoulés suite à des événements pluvieux intenses (processus de simulation semi-continue) a été décrit en soulignant son caractère original et parcimonieux du point de vue des hypothèses d'extrapolation nécessaires, et sa capacité à extraire le maximum d'information des séries chronologiques traitées. En nous appuyant sur une base de données de 32 bassins versants, nous avons analysé la sensibilité de cette méthode (i) à ses paramètres de simulation (i.e. nombre de tirages, etc.), (ii) au modèle probabiliste de pluie et (iii) au modèle hydrologique pluie-débit. Cette étude nous a permis de figer certains paramètres de simulation et surtout de hiérarchiser les étapes et les options de simulation du point de vue de leurs impacts sur le résultat final. Le passage des quantiles extrêmes de volumes à ceux des débits de pointe est réalisé par un facteur multiplicatif (coefficient de forme), identifié sur une collection d'hydrogrammes. Une sélection de ces hydrogrammes par une approche semi-automatique, basée sur une technique d'échantillonnage sup-seuil, a été développée. Globalement, ce travail a permis de reformuler, justifier et vérifier les hypothèses de base de la méthode, notamment celles liées à l'aléa pluviométrique ainsi qu'à l'aléa « état hydrique » du bassin versant, et celles liées au procédé de simulation hydrologique semi-continue des écoulements. Des améliorations et des simplifications de certains points de la méthode ont aussi été proposées pour des estimations de débit extrêmes plus fiables et robustes. Une adaptation de la classification des journées par type de temps a été proposée pour étendre le calendrier de référence, de 1953-2005 à 1850-2003, en exploitant des informations simplifiées sur les champs de pression. La procédure de simulation hydrologique a été améliorée, notamment en conditionnant le tirage des épisodes pluvieux au type de temps, ce qui permet de mieux prendre en compte la dépendance pluie- température. Ces travaux ne mettent certainement pas un point final au développement de la méthode SCHADEX mais la fondent sur des bases méthodologiques saines et documentées. Ils proposent des perspectives de recherche sur des thématiques variées (e.g. prise en compte de variabilité de la forme des hydrogrammes de crue pour le passage au débit de pointe, modélisation hydrologique, estimation de crues extrêmes en bassins non jaugés ou en contexte non-stationnaire)

    SCHADEX method of determination of extreme floods

    No full text
    La méthode SCHADEX (Simulation Climato-Hydrologique pour l'Appréciation des Débits EXtrêmes) est, depuis 2007, la méthode de référence pour le calcul de la crue de projet servant au dimensionnement des évacuateurs des barrages d'EDF (Électricité De France). Cette méthode vise à estimer les quantiles extrêmes de débits par un procédé de simulation stochastique qui combine un modèle probabiliste de pluie et un modèle hydrologique pluie-débit. L'objectif principal de cette thèse est la « validation » de la méthode SCHADEX, la compréhension de ses possibilités et de ses limites, notamment par des études de sensibilité aux hypothèses sous-jacentes et par sa confrontation à la plus large gamme possible d'observations (régions et climats contrastés, taille variable de bassins versants). La première étape de ce travail a porté sur la description probabiliste des événements pluvieux générateurs de crues, avec notamment l'introduction d'une distribution des pluies observées conditionnée par type de temps (distribution MEWP, Multi-Exponential Weather Patterns). Pour valider ce modèle probabiliste, nous avons comparé ses résultats à ceux de modèles classiques de la théorie des valeurs extrêmes. En nous appuyant sur une large base de données de stations pluviométriques (478 postes localisés en France, Suisse et Espagne) et sur une technique de comparaison orientée vers les valeurs extrêmes, nous avons évalué les performances du modèle MEWP en soulignant la justesse et la robustesse de ses estimations. Le procédé de simulation hydrologique des volumes écoulés suite à des événements pluvieux intenses (processus de simulation semi-continue) a été décrit en soulignant son caractère original et parcimonieux du point de vue des hypothèses d'extrapolation nécessaires, et sa capacité à extraire le maximum d'information des séries chronologiques traitées. En nous appuyant sur une base de données de 32 bassins versants, nous avons analysé la sensibilité de cette méthode (i) à ses paramètres de simulation (i.e. nombre de tirages, etc.), (ii) au modèle probabiliste de pluie et (iii) au modèle hydrologique pluie-débit. Cette étude nous a permis de figer certains paramètres de simulation et surtout de hiérarchiser les étapes et les options de simulation du point de vue de leurs impacts sur le résultat final. Le passage des quantiles extrêmes de volumes à ceux des débits de pointe est réalisé par un facteur multiplicatif (coefficient de forme), identifié sur une collection d'hydrogrammes. Une sélection de ces hydrogrammes par une approche semi-automatique, basée sur une technique d'échantillonnage sup-seuil, a été développée. Globalement, ce travail a permis de reformuler, justifier et vérifier les hypothèses de base de la méthode, notamment celles liées à l'aléa pluviométrique ainsi qu'à l'aléa « état hydrique » du bassin versant, et celles liées au procédé de simulation hydrologique semi-continue des écoulements. Des améliorations et des simplifications de certains points de la méthode ont aussi été proposées pour des estimations de débit extrêmes plus fiables et robustes. Une adaptation de la classification des journées par type de temps a été proposée pour étendre le calendrier de référence, de 1953-2005 à 1850-2003, en exploitant des informations simplifiées sur les champs de pression. La procédure de simulation hydrologique a été améliorée, notamment en conditionnant le tirage des épisodes pluvieux au type de temps, ce qui permet de mieux prendre en compte la dépendance pluie- température. Ces travaux ne mettent certainement pas un point final au développement de la méthode SCHADEX mais la fondent sur des bases méthodologiques saines et documentées. Ils proposent des perspectives de recherche sur des thématiques variées (e.g. prise en compte de variabilité de la forme des hydrogrammes de crue pour le passage au débit de pointe, modélisation hydrologique, estimation de crues extrêmes en bassins non jaugés ou en contexte non-stationnaire).Since 2007, EDF (Électricité de France) design floods of dam spillways are computed using a probabilistic method named SCHADEX (Climatic-hydrological simulation of extreme foods). This method aims at estimating extreme flood quantiles by the combination of a weather patterns based rainfall probabilistic model and a conceptual rainfall-runoff model. The aim of this PhD thesis is to “validate” SCHADEX method by assessing its potential and its limits with a sensitivity analysis of its hypothesis and with a comparison to the widest possible range of data (various regions and climates, different watershed sizes). In the first part of this thesis we describe the stochastic generation process of rainfall events. We introduce a rainfall probabilistic model based on weather pattern classification, called MEWP (Multi-Exponential Weather Pattern) distribution. To validate the MEWP model, we compare it to the standard probabilistic models of extreme values theory. Basing on a wide rainfall dataset (478 raingauges located in France, Switzerland and Spain) and on new specific criteria, we evaluate the suitability of MEWP model in terms of reliability and robustness. In the second part of this work, the hydrological simulation process of volumes, called semi-continuous simulation process, is introduced. We highlight the efficiency and the originality of this process link to its ability to mix various hydrological data for extreme flood estimation while keeping parsimonious extrapolation hypothesis. Basing on a dataset of 32 watersheds, we realize a sensitivity analysis of this process to (i) simulation parameters (i.e. number of simulation, etc.), (ii) to rainfall probabilistic model and (iii) to rainfall-runoff model. This study allows us to fix some simulation parameters and especially to prioritize the simulation steps and options by their impact on final results. The third part is about the passage from extreme volumes quantiles to extreme peak flows quantiles that is done by a peak flows ratio. This ratio is computed on a hydrograms sample that is extract from flood time series by a specific peak over threshold sub-sampling developed in this thesis. Globally, we reformulate, justify and verify the basic assumptions of the method, with a special focus on rainfall risk, hydrological risk and semi-continuous simulation process. In order to make extreme flood estimations more reliable and robust same improvements and simplifications of the method are proposed. To widen the available period of the weather pattern classification from 1953-2005 to 1850-2003, we computed another weather pattern classification based on shade geopotential information. To take into account precipitation-temperature dependency, the simulation process is improved conditioning the generation of rainfall events by weather pattern sub-sampling. Certainly this thesis does not put the end to SCHADEX method developments but ground it on sound and documented basis. Such future investigations about variability of shape flood hydrograms, comparison of hydrological model in extrapolation domain, extreme flood risk estimation on ungauged watershed and in non-stationary context, are planned

    Méthode SCHADEX de prédétermination des crues extrêmes

    No full text
    La méthode SCHADEX (Simulation Climato-Hydrologique pour l'Appréciation des Débits EXtrêmes) est, depuis 2007, la méthode de référence pour le calcul de la crue de projet servant au dimensionnement des évacuateurs des barrages d'EDF (Électricité De France). Cette méthode vise à estimer les quantiles extrêmes de débits par un procédé de simulation stochastique qui combine un modèle probabiliste de pluie et un modèle hydrologique pluie-débit. L'objectif principal de cette thèse est la validation de la méthode SCHADEX, la compréhension de ses possibilités et de ses limites, notamment par des études de sensibilité aux hypothèses sous-jacentes et par sa confrontation à la plus large gamme possible d'observations (régions et climats contrastés, taille variable de bassins versants). La première étape de ce travail a porté sur la description probabiliste des événements pluvieux générateurs de crues, avec notamment l'introduction d'une distribution des pluies observées conditionnée par type de temps (distribution MEWP, Multi-Exponential Weather Patterns). Pour valider ce modèle probabiliste, nous avons comparé ses résultats à ceux de modèles classiques de la théorie des valeurs extrêmes. En nous appuyant sur une large base de données de stations pluviométriques (478 postes localisés en France, Suisse et Espagne) et sur une technique de comparaison orientée vers les valeurs extrêmes, nous avons évalué les performances du modèle MEWP en soulignant la justesse et la robustesse de ses estimations. Le procédé de simulation hydrologique des volumes écoulés suite à des événements pluvieux intenses (processus de simulation semi-continue) a été décrit en soulignant son caractère original et parcimonieux du point de vue des hypothèses d'extrapolation nécessaires, et sa capacité à extraire le maximum d'information des séries chronologiques traitées. En nous appuyant sur une base de données de 32 bassins versants, nous avons analysé la sensibilité de cette méthode (i) à ses paramètres de simulation (i.e. nombre de tirages, etc.), (ii) au modèle probabiliste de pluie et (iii) au modèle hydrologique pluie-débit. Cette étude nous a permis de figer certains paramètres de simulation et surtout de hiérarchiser les étapes et les options de simulation du point de vue de leurs impacts sur le résultat final. Le passage des quantiles extrêmes de volumes à ceux des débits de pointe est réalisé par un facteur multiplicatif (coefficient de forme), identifié sur une collection d'hydrogrammes. Une sélection de ces hydrogrammes par une approche semi-automatique, basée sur une technique d'échantillonnage sup-seuil, a été développée. Globalement, ce travail a permis de reformuler, justifier et vérifier les hypothèses de base de la méthode, notamment celles liées à l'aléa pluviométrique ainsi qu'à l'aléa état hydrique du bassin versant, et celles liées au procédé de simulation hydrologique semi-continue des écoulements. Des améliorations et des simplifications de certains points de la méthode ont aussi été proposées pour des estimations de débit extrêmes plus fiables et robustes. Une adaptation de la classification des journées par type de temps a été proposée pour étendre le calendrier de référence, de 1953-2005 à 1850-2003, en exploitant des informations simplifiées sur les champs de pression. La procédure de simulation hydrologique a été améliorée, notamment en conditionnant le tirage des épisodes pluvieux au type de temps, ce qui permet de mieux prendre en compte la dépendance pluie- température. Ces travaux ne mettent certainement pas un point final au développement de la méthode SCHADEX mais la fondent sur des bases méthodologiques saines et documentées. Ils proposent des perspectives de recherche sur des thématiques variées (e.g. prise en compte de variabilité de la forme des hydrogrammes de crue pour le passage au débit de pointe, modélisation hydrologique, estimation de crues extrêmes en bassins non jaugés ou en contexte non-stationnaire).Since 2007, EDF (Électricité de France) design floods of dam spillways are computed using a probabilistic method named SCHADEX (Climatic-hydrological simulation of extreme foods). This method aims at estimating extreme flood quantiles by the combination of a weather patterns based rainfall probabilistic model and a conceptual rainfall-runoff model. The aim of this PhD thesis is to validate SCHADEX method by assessing its potential and its limits with a sensitivity analysis of its hypothesis and with a comparison to the widest possible range of data (various regions and climates, different watershed sizes). In the first part of this thesis we describe the stochastic generation process of rainfall events. We introduce a rainfall probabilistic model based on weather pattern classification, called MEWP (Multi-Exponential Weather Pattern) distribution. To validate the MEWP model, we compare it to the standard probabilistic models of extreme values theory. Basing on a wide rainfall dataset (478 raingauges located in France, Switzerland and Spain) and on new specific criteria, we evaluate the suitability of MEWP model in terms of reliability and robustness. In the second part of this work, the hydrological simulation process of volumes, called semi-continuous simulation process, is introduced. We highlight the efficiency and the originality of this process link to its ability to mix various hydrological data for extreme flood estimation while keeping parsimonious extrapolation hypothesis. Basing on a dataset of 32 watersheds, we realize a sensitivity analysis of this process to (i) simulation parameters (i.e. number of simulation, etc.), (ii) to rainfall probabilistic model and (iii) to rainfall-runoff model. This study allows us to fix some simulation parameters and especially to prioritize the simulation steps and options by their impact on final results. The third part is about the passage from extreme volumes quantiles to extreme peak flows quantiles that is done by a peak flows ratio. This ratio is computed on a hydrograms sample that is extract from flood time series by a specific peak over threshold sub-sampling developed in this thesis. Globally, we reformulate, justify and verify the basic assumptions of the method, with a special focus on rainfall risk, hydrological risk and semi-continuous simulation process. In order to make extreme flood estimations more reliable and robust same improvements and simplifications of the method are proposed. To widen the available period of the weather pattern classification from 1953-2005 to 1850-2003, we computed another weather pattern classification based on shade geopotential information. To take into account precipitation-temperature dependency, the simulation process is improved conditioning the generation of rainfall events by weather pattern sub-sampling. Certainly this thesis does not put the end to SCHADEX method developments but ground it on sound and documented basis. Such future investigations about variability of shape flood hydrograms, comparison of hydrological model in extrapolation domain, extreme flood risk estimation on ungauged watershed and in non-stationary context, are planned.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Méthode SCHADEX de prédétermination des crues extrêmes (méthodologie, applications, études de sensibilité)

    No full text
    La méthode SCHADEX (Simulation Climato-Hydrologique pour l'Appréciation des Débits EXtrêmes) est, depuis 2007, la méthode de référence pour le calcul de la crue de projet servant au dimensionnement des évacuateurs des barrages d'EDF (Électricité De France). Cette méthode vise à estimer les quantiles extrêmes de débits par un procédé de simulation stochastique qui combine un modèle probabiliste de pluie et un modèle hydrologique pluie-débit. L'objectif principal de cette thèse est la validation de la méthode SCHADEX, la compréhension de ses possibilités et de ses limites, notamment par des études de sensibilité aux hypothèses sous-jacentes et par sa confrontation à la plus large gamme possible d'observations (régions et climats contrastés, taille variable de bassins versants). La première étape de ce travail a porté sur la description probabiliste des événements pluvieux générateurs de crues, avec notamment l'introduction d'une distribution des pluies observées conditionnée par type de temps (distribution MEWP, Multi-Exponential Weather Patterns). Pour valider ce modèle probabiliste, nous avons comparé ses résultats à ceux de modèles classiques de la théorie des valeurs extrêmes. En nous appuyant sur une large base de données de stations pluviométriques (478 postes localisés en France, Suisse et Espagne) et sur une technique de comparaison orientée vers les valeurs extrêmes, nous avons évalué les performances du modèle MEWP en soulignant la justesse et la robustesse de ses estimations. Le procédé de simulation hydrologique des volumes écoulés suite à des événements pluvieux intenses (processus de simulation semi-continue) a été décrit en soulignant son caractère original et parcimonieux du point de vue des hypothèses d'extrapolation nécessaires, et sa capacité à extraire le maximum d'information des séries chronologiques traitées. En nous appuyant sur une base de données de 32 bassins versants, nous avons analysé la sensibilité de cette méthode (i) à ses paramètres de simulation (i.e. nombre de tirages, etc.), (ii) au modèle probabiliste de pluie et (iii) au modèle hydrologique pluie-débit. Cette étude nous a permis de figer certains paramètres de simulation et surtout de hiérarchiser les étapes et les options de simulation du point de vue de leurs impacts sur le résultat final. Le passage des quantiles extrêmes de volumes à ceux des débits de pointe est réalisé par un facteur multiplicatif (coefficient de forme), identifié sur une collection d'hydrogrammes. Une sélection de ces hydrogrammes par une approche semi-automatique, basée sur une technique d'échantillonnage sup-seuil, a été développée. Globalement, ce travail a permis de reformuler, justifier et vérifier les hypothèses de base de la méthode, notamment celles liées à l'aléa pluviométrique ainsi qu'à l'aléa état hydrique du bassin versant, et celles liées au procédé de simulation hydrologique semi-continue des écoulements. Des améliorations et des simplifications de certains points de la méthode ont aussi été proposées pour des estimations de débit extrêmes plus fiables et robustes. Une adaptation de la classification des journées par type de temps a été proposée pour étendre le calendrier de référence, de 1953-2005 à 1850-2003, en exploitant des informations simplifiées sur les champs de pression. La procédure de simulation hydrologique a été améliorée, notamment en conditionnant le tirage des épisodes pluvieux au type de temps, ce qui permet de mieux prendre en compte la dépendance pluie- température. Ces travaux ne mettent certainement pas un point final au développement de la méthode SCHADEX mais la fondent sur des bases méthodologiques saines et documentées. Ils proposent des perspectives de recherche sur des thématiques variées (e.g. prise en compte de variabilité de la forme des hydrogrammes de crue pour le passage au débit de pointe, modélisation hydrologique, estimation de crues extrêmes en bassins non jaugés ou en contexte non-stationnaire).Since 2007, EDF (Électricité de France) design floods of dam spillways are computed using a probabilistic method named SCHADEX (Climatic-hydrological simulation of extreme foods). This method aims at estimating extreme flood quantiles by the combination of a weather patterns based rainfall probabilistic model and a conceptual rainfall-runoff model. The aim of this PhD thesis is to validate SCHADEX method by assessing its potential and its limits with a sensitivity analysis of its hypothesis and with a comparison to the widest possible range of data (various regions and climates, different watershed sizes). In the first part of this thesis we describe the stochastic generation process of rainfall events. We introduce a rainfall probabilistic model based on weather pattern classification, called MEWP (Multi-Exponential Weather Pattern) distribution. To validate the MEWP model, we compare it to the standard probabilistic models of extreme values theory. Basing on a wide rainfall dataset (478 raingauges located in France, Switzerland and Spain) and on new specific criteria, we evaluate the suitability of MEWP model in terms of reliability and robustness. In the second part of this work, the hydrological simulation process of volumes, called semi-continuous simulation process, is introduced. We highlight the efficiency and the originality of this process link to its ability to mix various hydrological data for extreme flood estimation while keeping parsimonious extrapolation hypothesis. Basing on a dataset of 32 watersheds, we realize a sensitivity analysis of this process to (i) simulation parameters (i.e. number of simulation, etc.), (ii) to rainfall probabilistic model and (iii) to rainfall-runoff model. This study allows us to fix some simulation parameters and especially to prioritize the simulation steps and options by their impact on final results. The third part is about the passage from extreme volumes quantiles to extreme peak flows quantiles that is done by a peak flows ratio. This ratio is computed on a hydrograms sample that is extract from flood time series by a specific peak over threshold sub-sampling developed in this thesis. Globally, we reformulate, justify and verify the basic assumptions of the method, with a special focus on rainfall risk, hydrological risk and semi-continuous simulation process. In order to make extreme flood estimations more reliable and robust same improvements and simplifications of the method are proposed. To widen the available period of the weather pattern classification from 1953-2005 to 1850-2003, we computed another weather pattern classification based on shade geopotential information. To take into account precipitation-temperature dependency, the simulation process is improved conditioning the generation of rainfall events by weather pattern sub-sampling. Certainly this thesis does not put the end to SCHADEX method developments but ground it on sound and documented basis. Such future investigations about variability of shape flood hydrograms, comparison of hydrological model in extrapolation domain, extreme flood risk estimation on ungauged watershed and in non-stationary context, are planned.PARIS-BIUSJ-Sci.Terre recherche (751052114) / SudocSudocFranceF

    Optimization of the geopotential heights information used in a rainfall-based weather patterns classification over Austria

    No full text
    International audienceClassifications of atmospheric circulation patterns are useful tools to improve the description of the climate of a given region and the analysis of meteorological situations. In particular, weather patterns (WP) classifications could be used to improve the description of spatial heavy rainfall. Here, a bottom up approach, previously used to build WP classification in France, is applied for the definition of a WP classification useful for the description of Austrian heavy rainfall. The optimal spatial extent and the optimal position of the geopotential fields to be taken into account for a WP classification is studied. The proposed WP classification is shown to be coherent with the general knowledge on synoptic situations responsible for heavy rainfall over Austria. Moreover, the classification has good performances in term of heavy rainfall spatial description compared to 152 COST 733 classifications defined in the same region. In particular, we show that the choice of spatial extent of the geopotential fields, their position and their characteristics is relevant for capturing physical information on synoptic situations responsible for heavy rainfall and that it can improve weather pattern classification performances
    corecore