692 research outputs found
Experimental study of the vidicon system for information recording using the wide-gap spark chamber of gamma - telescope gamma-I
The development of the gamma ray telescope is investigated. The wide gap spark chambers, used to identify the gamma quanta and to determine the directions of their arrival, are examined. Two systems of information recording with the spark chambers photographic and vidicon system are compared
Inner radiation belt source of helium and heavy hydrogen isotopes
Nuclear interactions between inner zone protons and atoms in the upper atmosphere provide the main source of energetic H and He isotopes nuclei in the radiation belt. This paper reports on the specified calculations of these isotope intensities using various inner zone proton intensity models (AP-8 and SAMPEX/PET PSB97), the atmosphere drift-averaged composition and density model MSIS-90, and cross-sections of the interaction processes from the GNASH nuclear model code. To calculate drift-averaged densities and energy losses of secondaries, the particles were tracked in the geomagnetic field (modelled through IGRF-95) by integrating numerically the equation of the motion. The calculations take into account the kinematics of nuclear interactions along the whole trajectory of trapped proton. The comparison with new data obtained from the experiments on board RESURS-04 and MITA satellites and with data from SAMPEX and CRRES satellites taken during different phases of solar activity shows that the upper atmosphere is a sufficient source for inner zone helium and heavy hydrogen isotopes. The calculation results are energy spectra and angular distributions of light nuclear isotopes in the inner radiation belt that may be used to develop helium inner radiation belt model and to evaluate their contribution to SEU (single event upset) rates
The ALTCRISS Project On Board the International Space Station
The Altcriss project aims to perform a long term survey of the radiation environment on board the International Space Station. Measurements are being performed with active and passive devices in different locations and orientations of the Russian segment of the station. The goal is perform a detailed evaluation of the differences in particle fluence and nuclear composition due to different shielding material and attitude of the station. The Sileye-3/Alteino detector is used to identify nuclei up to Iron in the energy range above approximately equal to 60 MeV/n; a number of passive dosimeters (TLDs, CR39) are also placed in the same location of Sileye-3 detector. Polyethylene shielding is periodically interposed in front of the detectors to evaluate the effectiveness of shielding on the nuclear component of the cosmic radiation. The project was submitted to ESA in reply to the AO the Life and Physical Science of 2004 and was begun in December 2005. Dosimeters and data cards are rotated every six months: up to now three launches of dosimeters and data cards have been performed and have been returned with the end expedition 12 and 13
The measurements of light high-energy ions in NINA-2 experiment
The flux of energetic light ions at low altitude is both an important input and output for self-consistent calculations of albedo particles resulting from the interaction of trapped and cosmic ray particles, with the upper atmosphere. In addition, data on the flux of light ions are needed to evaluate radiation damages on space-borne instruments and on space mission crews. In spite of that, sources of data on the flux of energetic ions at LEO are roughly limited to the AP-8 model, CREME/CREME96 codes and the SAMPEX, NOAA/TIROS satellites. The existing and operational European SAC-C/ICARE and PROBA-1/SREM instruments could also be potential sources for proton data at LEO. Although AP-8 and SAMPEX/PSB97 may be publicly accessed through the SPENVIS, they exhibit an order of magnitude difference in low altitude proton fluxes and they do not contain helium fluxes. Therefore, improved light ion radiation models are still needed. <br><br> In this paper we present a procedure to identify and measure the energy of ions that are not stopped in the NINA-2 instrument. Moreover, problems related to particles that cross the instrument in the opposite direction are addressed and shown to be a possible cause of particle misidentification. Measuring fluxes of low abundance elements like energetic helium ions requires a good characterisation of all possible sources of backgrounds in the detector. Hints to determine the several contributions to the background are presented herein and may be applied to extract an order of magnitude of energetic ions fluxes from existing data sets, while waiting for dedicated high performance instruments
The ALTCRISS project on board the International Space Station
The Altcriss project aims to perform a long term survey of the radiation
environment on board the International Space Station. Measurements are being
performed with active and passive devices in different locations and
orientations of the Russian segment of the station. The goal is to perform a
detailed evaluation of the differences in particle fluence and nuclear
composition due to different shielding material and attitude of the station.
The Sileye-3/Alteino detector is used to identify nuclei up to Iron in the
energy range above 60 MeV/n. Several passive dosimeters (TLDs, CR39) are also
placed in the same location of Sileye-3 detector. Polyethylene shielding is
periodically interposed in front of the detectors to evaluate the effectiveness
of shielding on the nuclear component of the cosmic radiation. The project was
submitted to ESA in reply to the AO in the Life and Physical Science of 2004
and data taking began in December 2005. Dosimeters and data cards are rotated
every six months: up to now three launches of dosimeters and data cards have
been performed and have been returned with the end of expedition 12 and 13.Comment: Accepted for publication on Advances in Space Research
http://dx.doi.org/10.1016/j.asr.2007.04.03
Dark Matter Search Perspectives with GAMMA-400
GAMMA-400 is a future high-energy gamma-ray telescope, designed to measure
the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be
produced by annihilation or decay of dark matter particles, and to survey the
celestial sphere in order to study point and extended sources of gamma-rays,
measure energy spectra of Galactic and extragalactic diffuse gamma-ray
emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400
covers the energy range from 100 MeV to ~3000 GeV. Its angular resolution is
~0.01 deg(Eg > 100 GeV), and the energy resolution ~1% (Eg > 10 GeV). GAMMA-400
is planned to be launched on the Russian space platform Navigator in 2019. The
GAMMA-400 perspectives in the search for dark matter in various scenarios are
presented in this paperComment: 4 pages, 4 figures, submitted to the Proceedings of the International
Cosmic-Ray Conference 2013, Brazil, Rio de Janeir
A fine-grained silicon detector for high-energy gamma-ray astrophysics
We propose a silicon telescope to be placed in a satellite for the search of g-ray sources in the energy range between 25 MeV and 100 GeV. The proposed experiment will have an area of 2500 cm2, an energy resolution ranging from 7% to
8% and an angular resolution from 0.2 and 0.1 degrees between 1 GeV and 10 GeV. The telescope is based on the use of silicon strip detectors. Together with the energy
measurement, a calorimeter of this type allows the determination of the particle type and its arrival direction, through the analysis of the spatial and energetic distribution of the electromagnetic shower produced. Detectors based on silicon technology have many advantages for space applications: no gas refilling system or high voltages, no need of photomultipliers (low consumption), short dead time, possibility of selftriggering. The GILDA project has been designed having in mind the weight limitation of 400 kg required by the Resource-01 satellite and it is carried out in the
framework of the RIM (Russian Italian Mission) program. The launch is foreseen for the beginning of the next century
Time dependence of the electron and positron components of the cosmic radiation measured by the PAMELA experiment between July 2006 and December 2015
Cosmic-ray electrons and positrons are a unique probe of the propagation of
cosmic rays as well as of the nature and distribution of particle sources in
our Galaxy. Recent measurements of these particles are challenging our basic
understanding of the mechanisms of production, acceleration and propagation of
cosmic rays. Particularly striking are the differences between the low energy
results collected by the space-borne PAMELA and AMS-02 experiments and older
measurements pointing to sign-charge dependence of the solar modulation of
cosmic-ray spectra. The PAMELA experiment has been measuring the time variation
of the positron and electron intensity at Earth from July 2006 to December 2015
covering the period for the minimum of solar cycle 23 (2006-2009) till the
middle of the maximum of solar cycle 24, through the polarity reversal of the
heliospheric magnetic field which took place between 2013 and 2014. The
positron to electron ratio measured in this time period clearly shows a
sign-charge dependence of the solar modulation introduced by particle drifts.
These results provide the first clear and continuous observation of how drift
effects on solar modulation have unfolded with time from solar minimum to solar
maximum and their dependence on the particle rigidity and the cyclic polarity
of the solar magnetic field.Comment: 11 pages, 2 figure
- …