49 research outputs found

    Mechanisms of Groucho-mediated repression revealed by genome-wide analysis of Groucho binding and activity

    Get PDF
    Antibody validation (A) Chromatin isolated and sheared exactly as for the ChIP-seq analysis was subjected to immunoprecipitation with the indicated amounts (in μl) of affinity purified antibody against the Gro GP domain used for the ChIP-seq analysis, and then probed in a western blot with both an anti-Gro monoclonal antibody (mAb) or the anti-GP antibody. The band indicated by the asterisk is a cross-reacting protein that is recognized in the western blot but that is not efficiently immunoprecipitated by the anti-GP antibody. Ab HC – antibody heavy chain. (B) Heat map showing overlap (Jacard similarity coefficient [96]) between the peaks called in the duplicate ChIP-seq experiments at each time point. (C) Representative genome browser tracts comparing duplicate ChIP-seq experiments. (D and E) Comparison of Gro binding patterns obtained by ChIP-seq using our anti-GP antibody with that obtained by ChIP-chip (0–12 hr embryos; modENCODE #597) and ChIP-seq (white pre-pupae; modENCODE #4981) using independently derived antibodies [40]. (PDF 588 kb

    Widespread polycistronic gene expression in green algae

    Get PDF
    Polycistronic gene expression, common in prokaryotes, was thought to be extremely rare in eukaryotes. The development of long-read sequencing of full-length transcript isomers (Iso-Seq) has facilitated a reexamination of that dogma. Using Iso-Seq, we discovered hundreds of examples of polycistronic expression of nuclear genes in two divergent species of green algae: Chlamydomonas reinhardtii and Chromochloris zofingiensis Here, we employ a range of independent approaches to validate that multiple proteins are translated from a common transcript for hundreds of loci. A chromatin immunoprecipitation analysis using trimethylation of lysine 4 on histone H3 marks confirmed that transcription begins exclusively at the upstream gene. Quantification of polyadenylated [poly(A)] tails and poly(A) signal sequences confirmed that transcription ends exclusively after the downstream gene. Coexpression analysis found nearly perfect correlation for open reading frames (ORFs) within polycistronic loci, consistent with expression in a shared transcript. For many polycistronic loci, terminal peptides from both ORFs were identified from proteomics datasets, consistent with independent translation. Synthetic polycistronic gene pairs were transcribed and translated in vitro to recapitulate the production of two distinct proteins from a common transcript. The relative abundance of these two proteins can be modified by altering the Kozak-like sequence of the upstream gene. Replacement of the ORFs with selectable markers or reporters allows production of such heterologous proteins, speaking to utility in synthetic biology approaches. Conservation of a significant number of polycistronic gene pairs between C. reinhardtii, C. zofingiensis, and five other species suggests that this mechanism may be evolutionarily ancient and biologically important in the green algal lineage

    The path to triacylglyceride obesity in the sta6 strain of Chlamydomonas reinhardtii

    Get PDF
    When the sta6 (starch-null) strain of the green microalga Chlamydomonas reinhardtii is nitrogen starved in acetate and then “boosted” after 2 days with additional acetate, the cells become “obese” after 8 days, with triacylglyceride (TAG)-filled lipid bodies filling their cytoplasm and chloroplasts. To assess the transcriptional correlates of this response, the sta6 strain and the starch-forming cw15 strain were subjected to RNA-Seq analysis during the 2 days prior and 2 days after the boost, and the data were compared with published reports using other strains and growth conditions. During the 2 h after the boost, ∼425 genes are upregulated ≥2-fold and ∼875 genes are downregulated ≥2-fold in each strain. Expression of a small subset of “sensitive” genes, encoding enzymes involved in the glyoxylate and Calvin-Benson cycles, gluconeogenesis, and the pentose phosphate pathway, is responsive to culture conditions and genetic background as well as to boosting. Four genes—encoding a diacylglycerol acyltransferase (DGTT2), a glycerol-3-P dehydrogenase (GPD3), and two candidate lipases (Cre03.g155250 and Cre17.g735600)—are selectively upregulated in the sta6 strain. Although the bulk rate of acetate depletion from the medium is not boost enhanced, three candidate acetate permease-encoding genes in the GPR1/FUN34/YaaH superfamily are boost upregulated, and 13 of the “sensitive” genes are strongly responsive to the cell's acetate status. A cohort of 64 autophagy-related genes is downregulated by the boost. Our results indicate that the boost serves both to avert an autophagy program and to prolong the operation of key pathways that shuttle carbon from acetate into storage lipid, the combined outcome being enhanced TAG accumulation, notably in the sta6 strain

    Widespread polycistronic gene expression in green algae

    No full text

    RNA Purification from the Unicellular Green Alga, Chromochloris zofingiensis

    No full text
    Chromochloris zofingiensis is a unicellular green alga that is an emerging model species for studies in fields such as biofuel production, ketocarotenoid biosynthesis and metabolism. The recent availability of a high-quality genome assembly facilitates systems-level analysis, such as RNA-Seq. However, cells of this alga have a tough cell wall, which is a challenge for RNA purification. This protocol was designed specifically to breach the cell wall and isolate high-quality RNA suitable for RNA-Seq studies

    Data from: Chlamydomonas genome resource for laboratory strains reveals a mosaic of sequence variation, identifies true strain histories, and enables strain-specific studies

    No full text
    Chlamydomonas reinhardtii is a widely used reference organism in studies of photosynthesis, cilia, and biofuels. Most research in this field uses a few dozen standard laboratory strains that are reported to share a common ancestry, but exhibit substantial phenotypic differences. In order to facilitate ongoing Chlamydomonas research and explain the phenotypic variation, we mapped the genetic diversity within these strains using whole-genome resequencing. We identified 524,640 single nucleotide variants and 4812 structural variants among 39 commonly used laboratory strains. Nearly all (98.2%) of the total observed genetic diversity was attributable to the presence of two, previously unrecognized, alternate haplotypes that are distributed in a mosaic pattern among the extant laboratory strains. We propose that these two haplotypes are the remnants of an ancestral cross between two strains with ∼2% relative divergence. These haplotype patterns create a fingerprint for each strain that facilitates the positive identification of that strain and reveals its relatedness to other strains. The presence of these alternate haplotype regions affects phenotype scoring and gene expression measurements. Here, we present a rich set of genetic differences as a community resource to allow researchers to more accurately conduct and interpret their experiments with Chlamydomonas
    corecore