13 research outputs found

    Coexistence of a colon carcinoma with two distinct renal cell carcinomas: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We present the case of a patient with two tumors in his left kidney and a synchronous colon cancer. While coexisting tumors have been previously described in the same kidney or the kidney and other organs, or the colon and other organs, to the best of our knowledge no such concurrency of three primary tumors has been reported in the literature to date.</p> <p>Case presentation</p> <p>A 72-year-old man of Greek nationality presenting with pain in the right hypochondrium underwent a series of examinations that revealed gallstones, a tumor in the hepatic flexure of the colon and an additional tumor in the upper pole of the left kidney. He was subjected to a right hemicolectomy, left nephrectomy and cholecystectomy, and his postoperative course was uneventful. Histopathology examinations showed a mucinous colon adenocarcinoma, plus two tumors in the left kidney, a papillary renal cell carcinoma and a chromophobe renal cell carcinoma.</p> <p>Conclusion</p> <p>This case underlines the need to routinely scan patients pre-operatively in order to exclude coexisting tumors, especially asymptomatic renal tumors in patients with colorectal cancer, and additionally to screen concurrent tumors genetically in order to detect putative common genetic alterations.</p

    Origin of ferromagnetic response in diluted magnetic semiconductors and oxides

    Full text link
    This paper reviews the present understanding of the origin of ferromagnetic response of diluted magnetic semiconductors and diluted magnetic oxides as well as in some nominally magnetically undoped materials. It is argued that these systems can be grouped into four classes. To the first belong composite materials in which precipitations of a known ferromagnetic, ferrimagnetic or antiferromagnetic compound account for magnetic characteristics at high temperatures. The second class forms alloys showing chemical nano-scale phase separation into the regions with small and large concentrations of the magnetic constituent. To the third class belong (Ga,Mn)As, heavily doped p-(Zn,Mn)Te, and related semiconductors. In these solid solutions the theory built on p-d Zener's model of hole-mediated ferromagnetism and on either the Kohn-Luttinger kp theory or the multi-orbital tight-binding approach describes qualitatively, and often quantitatively many relevant properties. Finally, in a number of carrier-doped DMS and DMO a competition between long-range ferromagnetic and short-range antiferromagnetic interactions and/or the proximity of the localisation boundary lead to an electronic nano-scale phase separation.Comment: review, 19 pages, 4 figure

    Diverse mechanisms in proton knockout reactions from the Borromean nucleus 17Ne

    Get PDF
    Nucleon knockout experiments using beryllium or carbon targets reveal a strong dependence of the quenching factors, i.e., the ratio (R s) of theoretical to the experimental spectroscopic factors (C 2S), on the proton-neutron asymmetry in the nucleus under study. However, this dependence is greatly reduced when a hydrogen target is used. To understand this phenomenon, exclusive 1H (17Ne , 2p16F) and inclusive 12C(17Ne,2p16F)X , 12C (17Ne , 16F) X as well as 1H (17Ne , 16F) X (X-denotes undetected reaction products) reactions with 16F in the ground and excited states were analysed. The longitudinal momentum distribution of 16F and the correlations between the detached protons were studied. In the case of the carbon target, there is a significant deviation from the predictions of the eikonal model. The eikonal approximation was used to extract spectroscopic factor values C 2S . The experimental C 2S value obtained with C target is markedly lower than that for H target. This is interpreted as rescattering due to simultaneous nucleon knockout from both reaction partners, 17Ne and 12C

    Antiferromagnetic interlayer coupling in ferromagnetic semiconductor

    No full text
    Antiferromagnetic coupling between ferromagnetic layers has been observed for the first time in an all-semiconductor superlattice structure \chem{EuS/PbS(001)}, by neutron scattering and magnetization measurements. Spin-dependent superlattice band structure effects are invoked to explain the possible origin and the strength of the observed coupling

    Interactions between 4He nuclei and protons at intermediate energies

    No full text
    corecore