852 research outputs found
Manipulasi Laba Riil: Upaya Untuk Menghindari Kerugian
This study aims to determine the practice of real earnings manipulation to avoid losses. This study uses four proxy of earnings manipulation that abnormal operating cash flow , abnormal production costs ,abnormal discretionary expenses, and real manipulation combinations. This research used sample on manufacturing companies listed on the Indonesia Stock Exchange among 2010-2012 by using purposive sampling method. Sample used in this study were 104 firm-years observation. This research using multiple regression analysis. Grouping the sample companies Identified allegedly manipulating profit and not identified earnings manipulation using EPS distribution. EPS based distribution rupiah exchange rate against the US $. The test results show This study provides empirical evidence that many companies perform real earnings management to increase the company's operating cash flow and increase the cost of production to avoid losses
Penguji Manipulasi Laba Real Pada Pengungkapan Corporate Social Responsibility (Studi Empiris Pada Perusahaan Manufaktur Di Bursa Efek Indonesia)
This study aims to examine empirically the effect of real earnings manipulation to CSR disclosure. A proxy for real earnings manipulation using models Roychowdhury (2006). CSR disclosure is measured using Corporate Social Disclosure Index (CSDI) based item reporting standard Global Reporting Initiative (GRI) are disclosed in the company\u27s annual report. The study sample consisted of 261 manufacturing companies in 2012-2014. The results showed real earnings manipulation significant positive effect on CSR disclosure.Keywwords: Earnings Manipulation, Corporate Social Responsibility, Manufacturing Companies
Thermopower of Interacting GaAs Bilayer Hole Systems in the Reentrant Insulating Phase near
We report thermopower measurements of interacting GaAs bilayer hole systems.
When the carrier densities in the two layers are equal, these systems exhibit a
reentrant insulating phase near the quantum Hall state at total filling factor
. Our data show that as the temperature is decreased, the thermopower
diverges in the insulating phase. This behavior indicates the opening of an
energy gap at low temperature, consistent with the formation of a pinned Wigner
solid. We extract an energy gap and a Wigner solid melting phase diagram.Comment: to be published in Phys. Rev. Let
Pathophysiological changes occurring during Escherichia coli endotoxin and Pasteurella multocida challenge in piglets: relationship with cough and temperature and predicitive value for intensity of lesions.
The aims of this study were (1) to correlate cough and body temperature (BT) with the severity of bronchopneumonia in pigs, (2) to determine whether these clinical signs can be used to early diagnose bronchopneumonia and (3) to assess the predictive values of cough and BT regarding lung lesions. Bronchopneumonia was induced by administering E. coli endotoxin (LPS) combined with Pasteurella multocida type A (PmA) in the trachea of 13 piglets. Saline-instilled negative controls (n = 8), PmA inoculated (n = 6) and LPS instilled (n = 5) groups were also constituted. Cough and BT were recorded daily while the bronchopneumonia severity was assessed using bronchoalveolar lavage fluid (BALF) cytology, cytokines and measurement of lung lesion volume. Changes in expiratory breathing pattern were also measured (Penh). The combination of LPS and PmA induced a subacute bronchopneumonia characterised by macrophage, neutrophil, and lymphocyte infiltration, changes in Penh and an increase in the mRNA level of IFN-gamma while IL8, IL-18 and TNF-alpha mRNA levels remained unchanged. The daily body weight gain of infected animals was significantly reduced. Cough and BT changes were proportional to the intensity of the lung inflammatory process, functional respiratory changes and to the extent of macroscopic lesions. When comparing the individual values of cough and BT to thresholds defined for both parameters, an early diagnosis of pneumonia was possible. Considering the pooled data of each group, it was possible to define thresholds allowing an early segregation between the groups of diseased and healthy piglets. The daily values of cough and BT were predictive for the volume of lung lesions recorded at the end of the trial. In conclusion, cough and BT appear as potential indicators for the intensity and the evolution of the respiratory disease. They also seem to be good predictors for the magnitude of lung lesions and weight gain recorded at the study endpoint
Identifying Pathway Proteins in Networks using Convergence
One of the key goals of systems biology concerns the analysis of experimental biological data available to the scientific public. New technologies are rapidly developed to observe and report whole-scale biological phenomena; however, few methods exist with the ability to produce specific, testable hypotheses from this noisy ‘big’ data. In this work, we propose an approach that combines the power of data-driven network theory along with knowledge-based ontology to tackle this problem. Network models are especially powerful due to their ability to display elements of interest and their relationships as internetwork structures. Additionally, ontological data actually supplements the confidence of relationships within the model without clouding critical structure identification. As such, we postulate that given a (gene/protein) marker set of interest, we can systematically identify the core of their interactions (if they are indeed working together toward a biological function), via elimination of original markers and addition of additional necessary markers. This concept, which we refer to as “convergence,” harnesses the idea of “guilt-by-association” and recursion to identify whether a core of relationships exists between markers. In this study, we test graph theoretic concepts such as shortest-path, k-Nearest- Neighbor and clustering) to identify cores iteratively in data- and knowledge-based networks in the canonical yeast Pheromone Mating Response pathway. Additionally, we provide results for convergence application in virus infection, hearing loss, and Parkinson’s disease. Our results indicate that if a marker set has common discrete function, this approach is able to identify that function, its interacting markers, and any new elements necessary to complete the structural core of that function. The result below find that the shortest path function is the best approach of those used, finding small target sets that contain a majority or all of the markers in the gold standard pathway. The power of this approach lies in its ability to be used in investigative studies to inform decisions concerning target selection
X-rays from Saturn: A study with XMM-Newton and Chandra over the years 2002-05
We present the results of the two most recent (2005) XMM-Newton observations
of Saturn together with the re-analysis of an earlier (2002) observation from
the XMM-Newton archive and of three Chandra observations in 2003 and 2004.
While the XMM-Newton telescope resolution does not enable us to resolve
spatially the contributions of the planet's disk and rings to the X-ray flux,
we can estimate their strengths and their evolution over the years from
spectral analysis, and compare them with those observed with Chandra. The
spectrum of the X-ray emission is well fitted by an optically thin coronal
model with an average temperature of 0.5 keV. The addition of a fluorescent
oxygen emission line at ~0.53 keV improves the fits significantly. In
accordance with earlier reports, we interpret the coronal component as emission
from the planetary disk, produced by the scattering of solar X-rays in Saturn's
upper atmosphere, and the line as originating from the Saturnian rings. The
strength of the disk X-ray emission is seen to decrease over the period 2002 -
2005, following the decay of solar activity towards the current minimum in the
solar cycle. By comparing the relative fluxes of the disk X-ray emission and
the oxygen line, we suggest that the line strength does not vary over the years
in the same fashion as the disk flux. We consider possible alternatives for the
origin of the line. The connection between solar activity and the strength of
Saturn's disk X-ray emission is investigated and compared with that of Jupiter.
We also discuss the apparent lack of X-ray aurorae on Saturn and conclude that
they are likely to lie below the sensitivity threshold of current Earth-bound
observatories. A similar comparison for Uranus and Neptune leads to the same
disappointing conclusion.Comment: 10 pages, 5 figures; to be published in 'Astronomy and Astrophysics
Use of a global model to understand speciated atmospheric mercury observations at five high-elevation sites
© 2015 Author(s). Atmospheric mercury (Hg) measurements using the Tekran® analytical system from five high-elevation sites (1400-3200 m elevation), one in Asia and four in the western US, were compiled over multiple seasons and years, and these data were compared with the GEOS-Chem global model. Mercury data consisted of gaseous elemental Hg (GEM) and "reactive Hg" (RM), which is a combination of the gaseous oxidized (GOM) and particulate bound ( < 2.5 μm) (PBM) fractions as measured by the Tekran® system. We used a subset of the observations by defining a "free tropospheric" (FT) data set by screening using measured water vapor mixing ratios. The oxidation scheme used by the GEOS-Chem model was varied between the standard run with Br oxidation and an alternative run with OH-O 3 oxidation. We used this model-measurement comparison to help interpret the spatio-temporal trends in, and relationships among, the Hg species and ancillary parameters, to understand better the sources and fate of atmospheric RM. The most salient feature of the data across sites, seen more in summer relative to spring, was that RM was negatively correlated with GEM and water vapor mixing ratios (WV) and positively correlated with ozone (O 3 ), both in the standard model and the observations, indicating that RM was formed in dry upper altitude air from the photo-oxidation of GEM. During a free tropospheric transport high RM event observed sequentially at three sites from Oregon to Nevada, the slope of the RM/GEM relationship at the westernmost site was-1020 ± 209 pg ng -1 , indicating near-quantitative GEM-to-RM photochemical conversion. An improved correlation between the observations and the model was seen when the model was run with the OH-O3 oxidation scheme instead of the Br oxidation scheme. This simulation produced higher concentrations of RM and lower concentrations of GEM, especially at the desert sites in northwestern Nevada. This suggests that future work should investigate the effect of Br-and O 3 -initiated gas-phase oxidation occurring simultaneously in the atmosphere, as well as aqueous and heterogeneous reactions to understand whether there are multiple global oxidants for GEM and hence multiple forms of RM in the atmosphere. If the chemical forms of RM were known, then the collection efficiency of the analytical method could be evaluated better.Taiwan. Environmental Protection Administratio
Classifying multi-level stress responses from brain cortical EEG in Nurses and Non-health professionals using Machine Learning Auto Encoder
ObjectiveMental stress is a major problem in our society and has become an area of interest for many psychiatric researchers. One primary research focus area is the identification of bio-markers that not only identify stress but also predict the conditions (or tasks) that cause stress. Electroencephalograms (EEGs) have been used for a long time to study and identify bio-markers. While these bio-markers have successfully predicted stress in EEG studies for binary conditions, their performance is suboptimal for multiple conditions of stress.MethodsTo overcome this challenge, we propose using latent based representations of the bio-markers, which have been shown to significantly improve EEG performance compared to traditional bio-markers alone. We evaluated three commonly used EEG based bio-markers for stress, the brain load index (BLI), the spectral power values of EEG frequency bands (alpha, beta and theta), and the relative gamma (RG), with their respective latent representations using four commonly used classifiers.ResultsThe results show that spectral power value based bio-markers had a high performance with an accuracy of 83%, while the respective latent representations had an accuracy of 91%
From START to FINISH : the influence of osmotic stress on the cell cycle
Peer reviewedPublisher PD
- …