2,542 research outputs found
Classifying and Grouping Mammography Images into Communities Using Fisher Information Networks to Assist the Diagnosis of Breast Cancer
© 2020, Springer Nature Switzerland AG. The aim of this paper is to build a computer based clinical decision support tool using a semi-supervised framework, the Fisher Information Network (FIN), for visualization of a set of mammographic images. The FIN organizes the images into a similarity network from which, for any new image, reference images that are closely related can be identified. This enables clinicians to review not just the reference images but also ancillary information e.g. about response to therapy. The Fisher information metric defines a Riemannian space where distances reflect similarity with respect to a given probability distribution. This metric is informed about generative properties of data, and hence assesses the importance of directions in space of parameters. It automatically performs feature relevance detection. This approach focusses on the interpretability of the model from the standpoint of the clinical user. Model predictions were validated using the prevalence of classes in each of the clusters identified by the FIN
Estimation of proteinuria as a predictor of complications of pre-eclampsia: a systematic review
Background
Proteinuria is one of the essential criteria for the clinical diagnosis of pre-eclampsia. Increasing levels of proteinuria is considered to be associated with adverse maternal and fetal outcomes. We aim to determine the accuracy with which the amount of proteinuria predicts maternal and fetal complications in women with pre-eclampsia by systematic quantitative review of test accuracy studies.
Methods
We conducted electronic searches in MEDLINE (1951 to 2007), EMBASE (1980 to 2007), the Cochrane Library (2007) and the MEDION database to identify relevant articles and hand-search of selected specialist journals and reference lists of articles. There were no language restrictions for any of these searches. Two reviewers independently selected those articles in which the accuracy of proteinuria estimate was evaluated to predict maternal and fetal complications of pre-eclampsia. Data were extracted on study characteristics, quality and accuracy to construct 2 × 2 tables with maternal and fetal complications as reference standards.
Results
Sixteen primary articles with a total of 6749 women met the selection criteria with levels of proteinuria estimated by urine dipstick, 24-hour urine proteinuria or urine protein:creatinine ratio as a predictor of complications of pre-eclampsia. All 10 studies predicting maternal outcomes showed that proteinuria is a poor predictor of maternal complications in women with pre-eclampsia. Seventeen studies used laboratory analysis and eight studies bedside analysis to assess the accuracy of proteinuria in predicting fetal and neonatal complications. Summary likelihood ratios of positive and negative tests for the threshold level of 5 g/24 h were 2.0 (95% CI 1.5, 2.7) and 0.53 (95% CI 0.27, 1) for stillbirths, 1.5 (95% CI 0.94, 2.4) and 0.73 (95% CI 0.39, 1.4) for neonatal deaths and 1.5 (95% 1, 2) and 0.78 (95% 0.64, 0.95) for Neonatal Intensive Care Unit admission.
Conclusion
Measure of proteinuria is a poor predictor of either maternal or fetal complications in women with pre-eclampsia
Assessing record linkage between health care and Vital Statistics databases using deterministic methods
BACKGROUND: We assessed the linkage and correct linkage rate using deterministic record linkage among three commonly used Canadian databases, namely, the population registry, hospital discharge data and Vital Statistics registry. METHODS: Three combinations of four personal identifiers (surname, first name, sex and date of birth) were used to determine the optimal combination. The correct linkage rate was assessed using a unique personal health number available in all three databases. RESULTS: Among the three combinations, the combination of surname, sex, and date of birth had the highest linkage rate of 88.0% and 93.1%, and the second highest correct linkage rate of 96.9% and 98.9% between the population registry and Vital Statistics registry, and between the hospital discharge data and Vital Statistics registry in 2001, respectively. Adding the first name to the combination of the three identifiers above increased correct linkage by less than 1%, but at the cost of lowering the linkage rate almost by 10%. CONCLUSION: Our findings suggest that the combination of surname, sex and date of birth appears to be optimal using deterministic linkage. The linkage and correct linkage rates appear to vary by age and the type of database, but not by sex
A new hammer to crack an old nut : interspecific competitive resource capture by plants is regulated by nutrient supply, not climate
Peer reviewedPublisher PD
An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis
Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is
a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a
complex disease caused by metastasis of tumor cells from their primary site and
is characterized by intricate interplay of molecular interactions.
Identification of targets for multifactorial diseases such as SBC, the most
frequent complication of breast and prostate cancers, is a challenge. Towards
achieving our aim of identification of targets specific to SBC, we constructed
a 'Cancer Genes Network', a representative protein interactome of cancer genes.
Using graph theoretical methods, we obtained a set of key genes that are
relevant for generic mechanisms of cancers and have a role in biological
essentiality. We also compiled a curated dataset of 391 SBC genes from
published literature which serves as a basis of ontological correlates of
secondary bone cancer. Building on these results, we implement a strategy based
on generic cancer genes, SBC genes and gene ontology enrichment method, to
obtain a set of targets that are specific to bone metastasis. Through this
study, we present an approach for probing one of the major complications in
cancers, namely, metastasis. The results on genes that play generic roles in
cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have
broader implications in understanding the role of molecular regulators in
mechanisms of cancers. Specifically, our study provides a set of potential
targets that are of ontological and regulatory relevance to secondary bone
cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary
information). Revised after critical reviews. Accepted for Publication in
PLoS ON
Simple model systems: a challenge for Alzheimer's disease
The success of biomedical researches has led to improvement in human health and increased life expectancy. An unexpected consequence has been an increase of age-related diseases and, in particular, neurodegenerative diseases. These disorders are generally late onset and exhibit complex pathologies including memory loss, cognitive defects, movement disorders and death. Here, it is described as the use of simple animal models such as worms, fishes, flies, Ascidians and sea urchins, have facilitated the understanding of several biochemical mechanisms underlying Alzheimer's disease (AD), one of the most diffuse neurodegenerative pathologies. The discovery of specific genes and proteins associated with AD, and the development of new technologies for the production of transgenic animals, has helped researchers to overcome the lack of natural models. Moreover, simple model systems of AD have been utilized to obtain key information for evaluating potential therapeutic interventions and for testing efficacy of putative neuroprotective compounds
Studying Language Change Using Price Equation and Pólya-urn Dynamics
Language change takes place primarily via diffusion of linguistic variants in a population of individuals. Identifying selective pressures on this process is important not only to construe and predict changes, but also to inform theories of evolutionary dynamics of socio-cultural factors. In this paper, we advocate the Price equation from evolutionary biology and the Pólya-urn dynamics from contagion studies as efficient ways to discover selective pressures. Using the Price equation to process the simulation results of a computer model that follows the Pólya-urn dynamics, we analyze theoretically a variety of factors that could affect language change, including variant prestige, transmission error, individual influence and preference, and social structure. Among these factors, variant prestige is identified as the sole selective pressure, whereas others help modulate the degree of diffusion only if variant prestige is involved. This multidisciplinary study discerns the primary and complementary roles of linguistic, individual learning, and socio-cultural factors in language change, and offers insight into empirical studies of language change
Seasonal changes in patterns of gene expression in avian song control brain regions.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity
Fast extraction of neuron morphologies from large-scale SBFSEM image stacks
Neuron morphology is frequently used to classify cell-types in the mammalian cortex. Apart from the shape of the soma and the axonal projections, morphological classification is largely defined by the dendrites of a neuron and their subcellular compartments, referred to as dendritic spines. The dimensions of a neuron’s dendritic compartment, including its spines, is also a major determinant of the passive and active electrical excitability of dendrites. Furthermore, the dimensions of dendritic branches and spines change during postnatal development and, possibly, following some types of neuronal activity patterns, changes depending on the activity of a neuron. Due to their small size, accurate quantitation of spine number and structure is difficult to achieve (Larkman, J Comp Neurol 306:332, 1991). Here we follow an analysis approach using high-resolution EM techniques. Serial block-face scanning electron microscopy (SBFSEM) enables automated imaging of large specimen volumes at high resolution. The large data sets generated by this technique make manual reconstruction of neuronal structure laborious. Here we present NeuroStruct, a reconstruction environment developed for fast and automated analysis of large SBFSEM data sets containing individual stained neurons using optimized algorithms for CPU and GPU hardware. NeuroStruct is based on 3D operators and integrates image information from image stacks of individual neurons filled with biocytin and stained with osmium tetroxide. The focus of the presented work is the reconstruction of dendritic branches with detailed representation of spines. NeuroStruct delivers both a 3D surface model of the reconstructed structures and a 1D geometrical model corresponding to the skeleton of the reconstructed structures. Both representations are a prerequisite for analysis of morphological characteristics and simulation signalling within a neuron that capture the influence of spines
- …