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Abstract. The aim of this paper is to build a computer based clinical decision 
support tool using a semi-supervised framework, the Fisher Information Network 
(FIN), for visualization of a set of mammographic images. The FIN organizes the 
images into a similarity network from which, for any new image, reference 
images that are closely related can be identified. This enables clinicians to review 

not just the reference images but also ancillary information e.g. about response 
to therapy. The Fisher information metric defines a Riemannian space where 
distances reflect similarity with respect to a given probability distribution. This 
metric is informed about generative properties of data, and hence assesses the 
importance of directions in space of parameters. It automatically performs feature 
relevance detection. This approach focusses on the interpretability of the model 
from the standpoint of the clinical user. Model predictions were validated using 
the prevalence of classes in each of the clusters identified by the FIN.  
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1   Introduction 

Breast cancer is the most frequent cancer among women, impacting 2.1 million women 

each year, and also causes the greatest number of cancer-related deaths among women 

(1). This type of cancer usually takes time to develop and symptoms become evident 

very late. Currently, there is no effective way to cure later stage breast cancer, therefore 

early and accurate detection of tumor plays a vital role in improving the prognosis, as 

it allows for better treatment planning.  
Besides physical examination, commonly used modalities for breast screening are 

mammography, ultrasonography, Magnetic Resonance Imaging (MRI) and core-needle 

biopsy. Among these techniques, mammography is considered the best, cheapest way 

to detect the tumor (2). However sensitivity of mammography can vary considerably 

due to factors like radiologist’s experience, human error and image quality (3). Visual 

clues during early stages are subtle and varied in appearance making diagnosis difficult.  
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Many times, abnormalities are hidden by breast tissue structure. According to statistical 

reports, patients with dense breasts have high chances of receiving false negatives for 

lesions (4). Appearance of normal tissue is also highly variable and complex in 

mammograms, making tumor identification more difficult. Micro-calcifications are 

frequently missed. In the current practice, pathological confirmation of malignancy and 

tumor grade characterization is done with a biopsy, which is an invasive, painful 

procedure, that also carries risk of tumor cell migration (5). 
Most of existing work done in breast cancer classification is categorizing into normal 

and tumor class. However, tumor can be either benign or malignant, with the latter 

being the one requiring treatment. Hence, the two classes need to be differentiated as 

well. In this paper we attempt to classify mammography images into these three classes: 

malignant, benign or normal. Our aim is to propose a methodology that can assist 

clinicians in managing their breast cancer patients, by visualizing mammographic 

images in a different, novel way, using Fisher Information Network (FIN) (6).  

FIN provides a global view of data due to the use of Fisher metric and displays a 

meaningful structure that implicitly informs about underlying class probabilities. The 

FIN framework (7) can be used both for visualization of data and for constructing 

interpretable retrieval-based classifier since connection weights contain accurate 

information about similarity between data points. This approach focusses on both 
accurate prediction as well as interpretability of output. 

In our proposed methodology we construct a FIN using probability density estimates 

calculated for three classes- normal, benign, malignant. The aim is to detect underlying 

patterns and structure in breast cancer images. We test our approach using an existing, 

publicly available database (8). By producing FIN’s visualization of similarity 

networks we expect to elucidate the underlying data structure, community membership 

and class prediction. In addition, by dividing the network into communities and 

stratifying the data according to classification labels, we expect to be able to provide 

instances similar to new query image, which can then be analyzed in order to better 

understand new instances. 

The paper is organized as follows: Section 2 describes the dataset used for 
constructing and testing the FIN. Section 3 describes the methodology to construct the 

network In Section 4, we present the results and discuss its significance and 

implications. Finally, Section 5 presents our conclusions. 

2   Material 

Images from the Mammographic Image Analysis Society (Mini MIAS) database (8), 

[available at http://peipa.essex.ac.uk/info/mias.html] are used in this paper. The dataset 

is arranged in pairs of films, where each pair represents the left (even filename numbers) 

and right (odd filename numbers) mammogram of a single patient. The dataset is 

composed of 326 mammograms of right and left breast, from 161 patients, where 51 

observations were labeled as malignant, 66 as benign and 209 as normal/healthy. In this 

work we randomly under-sampled the normal observations to balance the number of 

cases per class in the dataset. Hence, the dataset used in this paper contains 66 benign, 

51 malignant and 62 normal observations, for a total of 179.  

http://peipa.essex.ac.uk/info/mias.html


The dataset includes radiologist's "truth" markings for locations of abnormalities 

present in images. For these images, coordinates for center as well as approximate 

radius of circle enclosing the abnormality, is available. In case of calcifications, center 

locations and radii are for clusters rather than individual calcifications. The dataset also 

contains information related to background tissue of patients, and margin/shape of 

abnormalities. Table 1 shows the details of the dataset used in this paper regarding 

tissue, abnormalities and class.  

Table 1 Mini MIAS Dataset used in Project 

 

Tumour shape 

Tumour type Breast type 

Benign Malignant Dense Fatty Glandular 

Architectural Distortions 9 10 7 6 6 

Asymmetric 6 9 7 4 4 

Calcification 13 12 14 5 6 

Circumscribed 20 4 3 13 8 

Miscellaneous 7 8 2 8 5 

Spiculated 11 8 7 5 7 

 

 

Classes 

Breast type Total 

per class Dense Fatty Glandular 

Benign 23 23 20 66 

Malignant 17 18 16 51 

Normal 11 31 20 62 

 

Figure 1 is an image from the dataset illustrating the challenges faced in automatic 

evaluation/classification of these medical images. Artefacts like patient’s names, labels, 

etc. are present in the images. Pectoral muscles having same intensity as tumors are 

visible in mediolateral oblique (MLO) view and needs to be removed. The intensity of 

normal region in dense breast is similar to that of tumor region in fatty and glandular 

breast (see Figure 2 b, c and f). Additionally, tumors can have varied shape, size and 

characteristics making classification difficult. Figure 2 shows examples of the different 

tissue types that can be found in this dataset: (a) fatty breast with normal tissue (b) fatty 

breast with mass tissue (c) dense breast with normal tissue (d) dense breast with mass 

tissue (e) glandular breast with normal tissue (f) glandular breast with tumour tissue. 



 
Figure 1: Problems in Mammogram Image in mini-MIAS dataset. 

 

 
Figure 2: Sample images from Mini MIAS dataset showing different tissue types. 

3 Methodology  

As discussed in the introduction section, the aim of the paper is to detect communities 

based on similarities detected in mammography images of cancer patients. For this, we 

proposed to follow the steps below (see Figure 3): 

 
Figure 3: Pipeline followed for creating the Fisher Information Network 



I) Image Pre-processing: This is the first step where noise in images is removed using 

3X3 size median filter followed by the removal of image artefacts using image 

binarization and intensity thresholding. The breast profile is extracted by removing 

pectoral muscles using slant line approximation. Images are then morphologically 

enhanced using top hat filter (9). Structuring element used was “box” of “radius” 5. 

II) Image Representation: Before representing images with features, ROI of size 

50X50, containing normal, benign tumor or malignant tumor regions, is extracted from 
enhanced images. For images with tumor, the center of abnormalities defined in dataset 

was taken as the ROI center. For the normal samples, coordinates of ROI center were 

manually defined. ROI extraction reduced the training time significantly. It also helped 

to provide an initial representative area for benign, malignant, and normal instances for 

our model to learn differences from. The image representation involves two stages, 

feature extraction and feature selection, explained below: 

a. Feature Extraction: In this paper, texture features are extracted to represent images. 

Texture contains information about structural arrangement of surfaces. It specifies 

the roughness or coarseness of an object surface and can be described as a pattern 

with some element of regularity. Texture features have been proven useful in 

differentiating mass and normal breasts tissues, and according to (10) they can 

outperform intensity features. The reason for this can be that tumor area exhibits 
low texture compared to normal parenchyma. Texture features can be extracted by 

many methods, for example statistical methods such as gray level co-occurrence 

matrix (GLCM) in (11), model based methods such as Markov random field (MRF) 

model (12), and transformation based methods such as wavelet decomposition 

(13). However, most studies use GLCM to extract texture features. In this paper, 

statistical first order texture features, and statistical second order texture features 

from GLCM, together with gray level run length matrix (GLRLM) are extracted. 

b. Feature Selection: This step is performed to remove noisy, redundant and irrelevant 

features and retain the optimal set of effective and discriminating features. 

Specifically, features were ranked using Classification and Regression Tree 

(CART) (14). As interpretability was the focus of the project, CART was preferred 
over other methods. CART also takes into account discriminative power of the 

variable with respect to target variable. 

III) Calculate probabilities: Classification for the three classes is performed using 

Multi-Layer Perceptron (MLP) with 10 fold cross-validation on 70% of the dataset used 

for training the algorithm and then testing on the remaining 30% of dataset to evaluate 

its performance. The hidden layer is set up with 3 hidden units and weight decay 

regularization of 0.1. Once the algorithm is tuned, probability densities of the three 

classes are calculated, which will then be used to calculate pairwise distances, 

producing the Fisher distance matrix. 

IV) Creating the FIN: Next step is to detect the structure in the dataset by constructing 

the FIN. Details for this can be found below (also illustrated in Figure 3): 

a. Fisher Information metric (6): This metric is derived from the Fisher distance 

matrix, and defines a Riemannian space where distances reflect similarity with 

respect to a given probability distribution. This metric is informed about generative 



properties of data, and hence can assess the importance of directions in space of 

parameters. FI combines multiple variables together to assess patterns and evaluate 

stability in system. It is obtained by differentiating the logarithm of the conditional 

probability 𝑝(𝑥|𝜃) with respect to 𝑥 and summing over all possible classifications: 

𝐹𝐼(𝑥) =  𝐸𝑝(𝑐|𝑥){(𝛻𝑥 log 𝑝(𝑐|𝑥))𝑇(𝛻𝑥 log 𝑝(𝑐|𝑥))} =

−𝐸𝑝(𝑐|𝑥){𝛻𝑥
2 log 𝑝(𝑐|𝑥)} . 

(1) 

Where 𝐸𝑝(𝑐|𝑥) denotes the expectation over the density function 𝑝(𝑐|𝑥) and 𝛻𝑥 is 

the gradient with respect to 𝑥. 

Given the FI metric, the infinitesimal distance between a pairs of neighboring 

points in the data space is given by the quadratic differential form: 

𝑑(𝑥, 𝑥 + 𝛥𝑥)2 = 𝛥𝑥𝑇𝐹𝐼(𝑥)𝛥𝑥 . (2) 

An important property of this metric is that it automatically scales each dimension 

of the data space according to its degree of relevance with respect to class 

membership, expanding directions along which 𝑝(𝑐|𝑥) changes rapidly and 
compressing those where the variation is little. The result is a Riemannian space 

where the posterior class membership probability changes evenly in all directions. 

b. Similarity matrix and community detection: After calculating the distance matrix 

with a Gaussian radial kernel, the similarity matrix is then computed from them, 

resulting in the adjacency matrix which defines network structure. The 

communities are then detected by maximizing modularity using Newman’s 

spectral optimization (15), resulting in clusters that best represent the graph 

structure. In medical database, patients do not interact as in social networks. Hence 

in medical networks, the presence of an edge indicates similarity between patients 

(observations), and the weights determine the strength of links. Central nodes in 

each community can also be found and used as representatives of the clusters 
giving a set of characteristic points to associate with each of the communities. 

c. Visualization of similarity network: This is done using classical Multi-

Dimensional Scaling (MDS) (16). MDS uses a distance matrix to produce 

representation of points in lower dimensional Euclidean space such that the 

distance between them approximate as closely as possible the dissimilarities 

between corresponding instances in the original matrix. Applying MDS is also key 

as the mapping of the matrix onto the Euclidean space will allow many commonly 

used methods from signal processing to be applied. All this, while also retaining 

the distance structure generated by the FI matrix. 

4   Results and Discussion 

Preprocessing images with median filter removed the noise and morphological 

enhancement increased the contrast between bright and dark areas so that the classifier 

performance was optimized. The balanced (taking into account the number of cases per 

class) accuracy of the initial MLP model was 78.98% on the separated test set, with a 
standard deviation of 6.89. This was considered acceptable as compared to the 



literature. Uppal and Naseem achieved an accuracy of 96.97% on MIAS dataset using 

fusion of cosine transform for classification into tumor and non-tumor(17) . MLP 

classifier in this paper distinguished fully between normal and tumor class. This initial 

MLP was created to generate the probability densities (i.e. probability of class 

membership) to generate the Fisher Information (FI) metric. 

Figure 4 shows the three-dimensional representation of the FIN for the three classes 

involved, i.e. normal, malignant and benign. As expected, the normal class is well 
separated from both tumor classes, which are in turn also reasonably well-separated 

from each other, with some misclassifications. 

 

Figure 4: FIN Representation of Mini MIAS Dataset. 

Figure 5 contains two- and three-dimensional representations of the dataset with 

communities identified by the network for the three classes. In this representation, 

edges are displayed only between members of same community to highlight cluster 

membership. The Fisher network is able to separate the data in three clearly 

distinguishable groups of communities, with normal cases being fully separated from 

the tumor cases. 

 

  

Figure 5: Three- and two-dimensional representations of the FIN with Communities identified 
by each network marked. 



Figure 6 further analyses the purity of the communities detected by the FIN. It 

separates the normal cases entirely in three communities (1, 5 and 8) of 35, 23 and 4 

subjects, respectively. These three communities not only do not contain observations 

from tumor samples, but also are represented very far from the rest of them representing 

the tumors. Communities 2, 4, 7 and 9 are mainly representing the benign cases, while 

the malignant tumors are mainly represented by communities 3 and 6. There is a benign 

case which is not assigned any of these nine communities and exists as a singleton in 
the center of the network (referred to as community 10 in the paper). See Table 2 for 

more details. 

 

 

Figure 6: FIN Representation with size and purity for each community marked 

Table 2 Number of cases per community of the main represented class. 

Communities Number of cases per community Main class represented 

1, 5 and 8 35, 23 and 4 normal cases, resp. Normal: 62 (out of 62) – 100% 

2, 4, 7, 9 and 10 27, 18, 9, 3 and 1 benign cases, resp. Benign: 58 (out of 66) – 87.9% 

3 and 6  22 and 17 malignant cases, resp. Malignant: (39 out of 51) – 76.5% 

 

The accuracies for the tumor classes were 76.5% and 87.9% for the malignant and 

benign classes, respectively. A total of 8 benign cases were falsely identified as 

malignant, and 12 malignant cases were falsely predicted as benign. None of the tumors 

were classified as normal, and none of the normal were classified as tumors, either 
benign or malignant, for a striking 100% accuracy in the separation of tumor from 

healthy tissue. 

Another interesting aspect of the FIN representation in Figure 6 is the shape formed 

by all the scattered tumor cases projected, going from community 2 (mainly benign) to 

community 3 (mainly malignant). Possibly, all the area in between is showing a 

representation of the different gradations of the tumor. This is a very useful 

representation as it provides a level of confidence in the prediction, which is key when 

analyzing new observations. Furthermore, when projecting a new case in the map, it 

would be possible to look at neighboring cases and learn their characteristics, 

treatments, outcomes and prognosis, and with that information improve the diagnosis 

and prognosis of the analyzed patient. 



The advantages of having used the FIN in this work can be summarized as follows: 

1) The FIN automatically filters relevant variables based on their contribution with 

respect to the classification problem, measured by their influence on the 

posterior class probabilities. This allowed us to create a model that amplifies 

distances along the direction of the classes of interest, i.e. normal, benign and 

malignant. 

2) It preserves the topology of the input space, producing affinity measures that 
reflect the data structure, which is later infused into the similarity network. It 

helps in understanding the hidden mechanisms that generated the data. This 

makes distances accurate measures of dissimilarity even when the number of 

covariates is large, as is the case in this study.   

3) The framework can be used as an interpretable retrieval-based classifier, and, 

even more importantly, the results obtained are interpretable. This was key in 

this study as it allowed us not only to produce highly accurate classifiers, but 

also to learn for each case the level of confidence in the predicted outcome. 

5 Conclusion 

It can be seen that the FIN is able to distinguish between tumor and normal regions with 

100% accuracy and separates benign and malignant tumor classes reasonably with 

some misclassifications. Nodes at the ends of the network are clear in terms of 

membership while membership of center nodes is relatively unclear and needs to be 

investigated further. Fisher information metric, used to construct the network, is 
informed about the generative properties of the data, and thus assesses the importance 

of directions in the space of the parameters. As the metric is Riemannian, expected 

variation of probability density caused by a distortion in parameters is different 

depending on the location of the space in which it is measured. Thus, Fisher information 

metric provides an elegant, clearly defined and statistically rigorous solution which is 

visualized as communities in a network, besides being classified into benign, malignant 

and normal classes. 

This paper enhances image morphologically, with median filter for noise removal. 

Statistical second order texture features were extracted with GLCM and GLRLM along 

with first order texture features. Other methods for image enhancement, noise removal 

and extracting features can also be tested in the future. 
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