489 research outputs found
<i>amoA</i> Gene Abundances and Nitrification Potential Rates Suggest that Benthic Ammonia-Oxidizing Bacteria and Not Archaea Dominate N Cycling in the Colne Estuary, United Kingdom
ABSTRACT
Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (
amoA
) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw]
−1
day
−1
in June, increasing to 37.4 μmol N gdw
−1
day
−1
in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw
−1
day
−1
in June, increasing to 11.7 μmol N gdw
−1
day
−1
in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB
amoA
gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally.
Nitrosomonas
spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA
amoA
gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly
Nitrosomonas
spp.) were of major significance in nitrification.
</jats:p
Biogeographical patterns of legume-nodulating <i>Burkholderia </i>spp.:from African Fynbos to continental scales
UNLABELLED: Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE: This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors.status: publishe
Redox properties of the iron-sulfur clusters in activated Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough)
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65750/1/j.1432-1033.1992.tb17261.x.pd
Laboratory selection for an accelerated mosquito sexual development rate
<p>Abstract</p> <p>Background</p> <p>Separating males and females at the early adult stage did not ensure the virginity of females of <it>Anopheles arabiensis </it>(Dongola laboratory strain), whereas two years earlier this method had been successful. In most mosquito species, newly emerged males and females are not able to mate successfully. For anopheline species, a period of 24 h post-emergence is generally required for the completion of sexual maturation, which in males includes a 180° rotation of the genitalia. In this study, the possibility of an unusually shortened sexual maturity period in the laboratory-reared colony was investigated.</p> <p>Methods</p> <p>The effect of two different sex-separation methods on the virginity of females was tested: females separated as pupae or less than 16 h post-emergence were mated with males subjected to various doses of radiation. T-tests were performed to compare the two sex-separation methods. The rate of genitalia rotation was compared for laboratory-reared and wild males collected as pupae in Dongola, Sudan, and analysed by Z-tests. Spermatheca dissections were performed on females mated with laboratory-reared males to determine their insemination status.</p> <p>Results</p> <p>When the sex-separation was performed when adults were less than 16 h post-emergence, expected sterility was never reached for females mated with radio-sterilized males. Expected sterility was accomplished only when sexes were separated at the pupal stage. Observation of genitalia rotation showed that some males from the laboratory strain Dongola were able to successfully mate only 11 h after emergence and 42% of the males had already completed rotation. A small proportion of the same age females were inseminated. Wild males showed a much slower genitalia rotation rate. At 17 h post-emergence, 96% of the laboratory-reared males had completed genitalia rotation whereas none of the wild males had.</p> <p>Conclusion</p> <p>This colony has been cultured in the laboratory for over one hundred generations, and now has accelerated sexual maturation when compared with the wild strain. This outcome demonstrates the kinds of selection that can be expected during insect colonization and maintenance, particularly when generations are non-overlapping and similar-age males must compete for mates.</p
Zicht op Evenwicht Landelijke implementatie van een cursus gericht op het verminderen van angst om te vallen bij zelfstandig wonende ouderen
Achtergrond: Zicht op Evenwicht is een effectieve
cognitief gedragsmatige groepscursus om
bezorgdheid om te vallen en gerelateerd
vermijdingsgedrag bij zelfstandig wonende
ouderen te verminderen. Dit artikel beschrijft de
landelijke implementatiestrategie van deze cursus
en de resultaten daarvan. De
implementatiestrategie had als doel de cursus in
2009 en 2010 bij minimaal 50 % van 64
thuiszorgorganisaties die zijn aangesloten bij het
Landelijk Steunpunt Preventie - Thuiszorg (LSP-T)
te implementeren.
Methoden: De implementatiestrategie is gebaseerd
op de vier fasen van het ‘Replicating Effective
Interventions’ (REP)model: randvoorwaarden, preimplementatie,
implementatie, en borging en
doorontwikkeling.
Resultaten: Na voorbereidende
implementatieactiviteiten zoals identificeren van
belemmerende factoren, consulteren van
stakeholders, gereedmaken van cursusmaterialen
en training van cursusbegeleiders (n053), is Zicht
op Evenwicht in de periode 2009–2010
geïmplementeerd bij 16 van thuiszorgorganisaties
van het LSP-T (25 %). Nog eens vijf
thuiszorgorganisaties hadden plannen om de
cursus aan te bieden. De cursus is in deze periode
landelijk 26 keer aangeboden, 19 keer uitgevoerd
en heeft 178 cursisten bereikt. Het verschil tussen
aanbod en uitvoering is een gevolg van moeizame
werving van cursisten. Na de implementatiefase
zijn nog eens 16 cursusbegeleiders getraind en
verloopt de verspreiding van cursusmaterialen
voorspoedig.
Conclusie: Het implementatietraject is
overeenkomstig de opzet van het REP-model
verlopen. Het beoogde implementatiedoel is niet
volledig bereikt in de periode van twee jaar,maar de
cursus geniet zichtbaar de interesse van ouderen,
cursusbegeleiders en thuiszorgorganisaties. De
continuering van aandacht voor verspreiding en
borging van de cursus in de eerstelijnszorg wordt
daarom aanbevolen
Comparison of male reproductive success in malaria-refractory and susceptible strains of Anopheles gambiae
<p>Abstract</p> <p>Background</p> <p>In female mosquitoes that transmit malaria, the benefits of being refractory to the <it>Plasmodium </it>parasite are balanced by the immunity costs in the absence of infection. Male mosquitoes, however, gain no advantage from being refractory to blood-transmitted parasites, so that any costs associated with an enhanced immune system in the males limit the evolution of female refractoriness and has practical implications for the release of transgenic males.</p> <p>Methods</p> <p>Aspects of the male cost of carrying <it>Plasmodium</it>-refractory genes were estimated by comparing the males' immune response and reproductive success among strains of <it>Anopheles gambiae </it>that had been selected for refractoriness or extreme susceptibility to the rodent malaria parasite, <it>Plasmodium yoelii nigeriensis</it>. The refractory males had a stronger melanization response than males from the susceptible line. Four traits were used as correlates of a male's reproductive success: the proportion of females that were inseminated by a fixed number of males in a cage within a fixed time frame, the proportion of females with motile sperm in their spermathecae, the proportion of ovipositing females, and the mean number of eggs per batch.</p> <p>Results</p> <p>Although there were significant differences among groups of males in sperm motility and oviposition success, these differences in male reproductive success were not associated with the refractory or susceptible male genotypes. Contrary to expectation, females mated to early emerging refractory males laid significantly more eggs per batch than females mated to later emerging susceptible males. Sperm motility and oviposition success were strongly correlated suggesting that variation in sperm motility influences female oviposition and ultimately male reproductive success.</p> <p>Conclusion</p> <p>An increased melanization response in male <it>A. gambiae </it>does not diminish male reproductive success under the experimental protocol used in this study. That refractory males induced ovipositing females to lay more eggs than susceptible males is an interesting result for any strategy considering the release of transgenic males. That sperm motility influences female oviposition is also important for the release of transgenic males.</p
Spatial distribution and male mating success of Anopheles gambiae swarms
<p>Abstract</p> <p>Background</p> <p><it>Anopheles gambiae </it>mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave <it>in copula</it>. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model.</p> <p>Results</p> <p>We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the <it>per capita </it>mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site.</p> <p>Conclusions</p> <p>Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of <it>An. gambiae </it>and discussed possible factors that account for its variation. We found that swarms of <it>An. gambiae </it>conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the <it>An. gambiae </it>mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble mating competition.</p
Skin parasite landscape determines host infectiousness in visceral leishmaniasis
Increasing evidence suggests that the infectiousness of patients for the sand fly vector of visceral leishmaniasis is linked to parasites found in the skin. Using a murine model that supports extensive skin infection with Leishmania donovani, spatial analyses at macro-(quantitative PCR) and micro-(confocal microscopy) scales indicate that parasite distribution is markedly skewed. Mathematical models accounting for this heterogeneity demonstrate that while a patchy distribution reduces the expected number of sand flies acquiring parasites, it increases the infection load for sand flies feeding on a patch, increasing their potential for onward transmission. Models representing patchiness at both macro- and micro-scales provide the best fit with experimental sand fly feeding data, pointing to the importance of the skin parasite landscape as a predictor of host infectiousness. Our analysis highlights the skin as a critical site to consider when assessing treatment efficacy, transmission competence and the impact of visceral leishmaniasis elimination campaigns.Parasitemia has been considered the main determinant of visceral leishmaniasis transmission. By combining imaging, qPCR and experimental xenodiagnoses with mathematical models, Doehl et al. argue that the patchy landscape of parasites in the skin is necessary to explain infectiousness
Co-existence of physiologically similar sulfate-reducing bacteria in a full-scale sulfidogenic bioreactor fed with a single organic electron donor
A combination of culture-dependent and independent methods was used to study the co-existence of different sulfate-reducing bacteria (SRB) in an upflow anaerobic sludge bed reactor treating sulfate-rich wastewater. The wastewater was fed with ethanol as an external electron donor. Twenty six strains of SRB were randomly picked and isolated from the highest serial dilution that showed growth (i.e. 108). Repetitive enterobacterial palindromic polymerase chain reaction and whole cell protein profiling revealed a low genetic diversity, with only two genotypes among the 26 strains obtained in the pure culture. The low genetic diversity suggests the absence of micro-niches within the reactor, which might be due to a low spatial and temporal micro-heterogeneity. The total 16S rDNA sequencing of two representative strains L3 and L7 indicated a close relatedness to the genus Desulfovibrio. The two strains differed in as many as five physiological traits, which might allow them to occupy distinct niches and thus co-exist within the same habitat. Whole cell hybridisation with fluorescently labeled oligonucleotide probes was performed to characterise the SRB community in the reactor. The isolated strains Desulfovibrio L3 and Desulfovibrio L7 were the most dominant SRB, representing 30–35% and 25–35%, respectively, of the total SRB community. Desulfobulbus-like bacteria contributed for 20–25%, and the Desulfobacca acetoxidans-specific probe targeted approximately 15–20% of the total SRB. The whole cell hybridisation results thus revealed a consortium of four different species of SRB that can be enriched and maintained on a single energy source in a full-scale sulfidogenic reactor
- …