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 2 

Abstract 45 

Rhizobia of the genus Burkholderia have large-scale distribution ranges, and are usually 46 

associated with South African papilionoid and South American mimosoid legumes, yet little 47 

is known about their genetic structuring at either local or global geographical scales. To 48 

understand variation at different spatial scales, from individual legumes in the Fynbos (South 49 

Africa) to a global context, we conducted analyses of chromosomal (16S rRNA, recA) and 50 

symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of 51 

nodulation genes is generally grouped according to the South African papilionoid or South 52 

American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to 53 

biogeography. While nodulation genes are structured on a continental scale, a geographical 54 

or host specific distribution pattern was not detected in the Fynbos region. In host range 55 

experiments, symbiotic promiscuity of Burkholderia tuberum STM678T and B. phymatum 56 

STM815T was discovered in selected Fynbos species. Finally, a greenhouse experiment was 57 

undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon 58 

lignosus, Indigofera filifolia, Macroptilium atropurpureum and Podalyria calyptrata) species 59 

to nodulate in South African (Fynbos) and Malawian (Savanna) soils. While the 60 

Burkholderia-philous Fynbos legumes (D. lignosus, I. filifolia and P. calyptrata) only 61 

nodulated in their native soils, the invasive neotropical species M. pudica did not develop 62 

nodules in the African soils. The Fynbos soil, notably rich in Burkholderia, seems to retain 63 

nodulation genes compatible with the local papilionoid legume flora, but is incapable of 64 

nodulating mimosoid legumes which have their center of diversity in the South American 65 

continent.  66 

 67 

 68 

 69 
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 3 

Importance section 70 

This study is the most comprehensive phylogenetic assessment of root-nodulating 71 

Burkholderia and investigates biogeographic and host-related patterns of the legume-72 

rhizobial symbiosis in the South African Fynbos biome, as well as at global scales, including 73 

native species from the South American Caatinga and Cerrado biomes. While a global 74 

investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation 75 

genes among South African and South American legumes, regionally distributed species in 76 

the Cape region were unrelated to geographical and host factors. 77 

78 
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 4 

Introduction 79 

Microorganisms have been observed to vary in distribution, diversity and species 80 

composition across spatial scales (1), challenging the long-held perception of a microbial 81 

cosmopolitism driven by their high dispersal capacities (2). Although microorganisms can 82 

disperse over lengthy distances, dispersal limitations have revealed spatially isolated 83 

microbial populations over multiple spatial scales (1,3-5). For rhizobia (both alpha- and beta-84 

subclasses of the Proteobacteria), similar geographical distribution patterns have been 85 

detected in different bacterial groups and over various spatial scales, showing a geographical 86 

structure preserved in phylogenies of both chromosomal and nodulation genes (6-11).  87 

Root-nodulating species of the genus Burkholderia (Betaproteobacteria), have been described 88 

from different regions in the world, including parts of the Americas, Africa, Asia and 89 

Australasia. The highest level of diversity has been reported from the South American 90 

Cerrado/Caatinga and South African Fynbos biomes (12), together with Asian and 91 

Australian/New Zealand representatives so far described exclusively from non-native 92 

invasive species, such as the weeds Mimosa diplotricha, M. pigra, M. pudica (13-18) and 93 

Dipogon lignosus (49,79). Burkholderia species isolated from native legumes from 94 

neotropical and African regions, which are dominated by distinct legume floras (South 95 

American Mimosoideae versus South African Papilionoideae), differ genetically in their 96 

nodulation genes (12,19), suggesting that the legume host is shaping symbiotic diversity and 97 

that the biogeography of rhizobia is linked to the distribution of compatible legume hosts 98 

((20) and references therein). Despite many local surveys of Burkholderia interactions with 99 

papilionoids and mimosoids across the globe, our knowledge of the global distribution 100 

pattern is still fragmented and a spatial survey of the genus Burkholderia has never been 101 

conducted in a global context and across biomes.  102 
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 5 

In South Africa, Burkholderia symbionts are widespread and associated with diverse lineages 103 

of the tribes Crotalarieae (21-23,26), Hypocalypteae (24,25), Indigofereae (26), Phaseoleae 104 

(26,27,28) and Podalyrieae (24,26,29,30), indicating that the South African soils are an 105 

important reservoir for nodulating Burkholderia, and thus this needs to be explored further 106 

for new candidate species. With the exception of B. phymatum strains nodulating the non-107 

native crop species Phaseolus vulgaris (common bean) in Moroccan soils (31), the legume-108 

Burkholderia symbiosis in Africa has only been reported in a range of sites within the 109 

Fynbos region, supporting the idea of the Cape region as an exclusive biodiversity hotspot 110 

for the symbiosis (12).  111 

The general aim of the present study is to provide novel insights into the biogeography of 112 

Burkholderia and to elucidate the extent to which it exhibits a geographical pattern in relation 113 

to the distribution of its hosts. Because lineages vary in distribution and diversity over 114 

various spatial scales, and spatial factors play a significant role in shaping microbial 115 

communities, it is clear that geographical patterning should be analyzed across multiple 116 

spatial scales (from local to broad geographical regions). We took advantage of the large 117 

record of root-nodulating Burkholderia established since the first reports of its nodulation 118 

ability ((12) and references therein), supplemented with new sequence data of Fynbos 119 

Burkholderia. Available sequence data for chromosomal 16S rRNA and the symbiosis-120 

related nodA, nodC and nifH genes were analyzed in a world-wide perspective to assess 121 

geographic patterns at a continental scale, as well as the host specific interactions with the 122 

legume subfamilies Mimosoideae and Papilionoideae.  123 

The diversity, geographic distribution and host associations were further investigated at a 124 

regional scale in the South African (Cape) Fynbos biome. The Burkholderia symbionts from 125 

five Cape legume tribes and 11 genera of the Papilionoideae were investigated by 126 
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 6 

phylogenetic analyses of two chromosomal genes (16S rRNA and recA) and one nodulation 127 

gene (nodA) in relation to their geography and host phylogeny.  128 

We hypothesize that the Burkholderia symbionts of native and invasive legume species 129 

reported from Africa, America, Asia and Australasia exhibit a geographical distribution 130 

pattern with continents having their own subset of symbionts. We also expect a geographical 131 

effect on the genetic variation of rhizobia at a regional scale within the Fynbos. Our specific 132 

objectives were (1) to determine and compare the Burkholderia types for housekeeping and 133 

symbiosis loci recorded from mimosoids and papilionoids reported from four different 134 

continents; (2) to investigate the distribution pattern of Burkholderia and its host-associations 135 

within the Fynbos biome, using field-collected nodules of indigenous papilionoids; (3) to 136 

investigate the ability of South African papilionoid legume species (Indigofera filifolia, 137 

Dipogon lignosus, Podalyria calyptrata, Psoralea pinnata) and the South American species 138 

Mimosa pudica (subfamily Mimosoideae) to form nodules in South African (Fynbos) and 139 

Malawian (Savanna) soil; and (4) to test and evaluate the host range of the Burkholderia 140 

tuberum STM678T and B. phymatum STM815T type strains on selected Fynbos species, 141 

which are known to exhibit different host affinities as dictated by their genetically distinct 142 

nodulation genes. We expect that the tested papilionoid legumes from the Fynbos are 143 

exclusively nodulated by the common and native symbiont B. tuberum STM678T. 144 

145 
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Material and Methods 146 

Burkholderia datasets and OTU-based analyses  147 

Analyses of Operational Taxonomic Units (OTUs) were used to cluster the 16S rRNA 148 

sequence data. A large 16S rRNA data set was constructed, comprising 1121 sequences and 149 

75 validly named Burkholderia species with multiple accessions per species. Sequences 150 

were aligned with available bacterial reference sequences via the Ribosomal Database 151 

Project (RDP pyrosequencing pipeline; http://pyro.cme.msu.edu). An uncorrected pairwise 152 

distance matrix was calculated and the number of OTUs and rarefaction curves at various 153 

cut-off values (0.030 to 0.010) were calculated in Mothur v.1.31.2 (33).  154 

Four other Burkholderia datasets were obtained from available 16S rRNA (365 sequences), 155 

nifH (246 sequences), nodA (152 sequences) and nodC (199 sequences), assigning all 156 

rhizobia to four geographical regions (Africa, America, Asia and Australasia and two 157 

legume subfamilies (Papilionoideae and Mimosoideae). The alignments were created with 158 

Muscle (32) using Geneious v.5.1.7 (http://www.geneious.com). The diversity of 16S rRNA 159 

sequences was clustered into OTUs, using the previous estimated cut-off value to delineate 160 

taxonomic identities at species level. For the data sets of nifH, nodA and nodC, we applied a 161 

similar conservative similarity cut-off value in order to classify genetic groups of the more 162 

variable symbiosis genes. Unique and shared types among different continents and 163 

subfamilies were identified in Mothur.  164 

Alignments for the NeighborNet analyses were compiled based on the previous 16S rRNA, 165 

nifH, nodA and nodC rhizobial datasets: one sequence representative per sequence cluster 166 

was manually selected from the original alignments and these were imported into SplitsTree 167 

v.4.12.8 (34) to display the phylogenetic relatedness among the clusters as a NeighborNet 168 

network (35), using the most complex model of nucleotide substitution (GTR) available. 169 

Bootstrap confidence values were generated using 1,000 permutations.  170 
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 8 

Nodule sampling, DNA extraction, amplification, cloning and sequencing to identify 171 

Fynbos rhizobia  172 

We investigated 20 root nodulated Fynbos species in this study, representing various 173 

localities (Fig. 1) and diverse host legumes (five legume tribes and 11 genera). Voucher 174 

information and GenBank accession numbers are listed in Table S2 and the geographical 175 

localities are shown in Figure 1. Nodules were collected in the field from a broad 176 

geographical range at different localities, covering diverse soil types ranging from limestone 177 

substrate (De Hoop Nature Reserve, Still Bay), granite substrate (Paarl Mountain Nature 178 

Reserve), sandstone mountain slopes (Bainskloof Nature Reserve) to coastal deep sand (Cape 179 

Point Nature Reserve). Three to five nodules were removed from each host plant for isolation 180 

of rhizobia.  181 

Rhizobia were identified by both standard culturing techniques (36) and direct genomic DNA 182 

extraction from nodules. The latter method enabled the unequivocal assessment of the 183 

intranodular endophyte diversity, including unculturable endophytes that can be masked 184 

using culturing-based techniques due to the selective effects of growth media and an 185 

incomplete sampling of colony morphotypes. For the standard culturing technique, rhizobia 186 

were isolated on yeast extract mannitol agar (YEMA) from a single bacterial colony type, 187 

following standard procedures (36). Pure rhizobial cultures from single colonies were stored 188 

at -80°C in YEM broth containing 20% glycerol. Total DNA of the rhizobial cultures was 189 

obtained by the following thermal cell lysis procedure: A loopful of bacterial culture was 190 

suspended in 20 μl lysis buffer (10% SDS, 1M NaOH) followed by incubation for 15 minutes 191 

at 95°C. The lysate was centrifuged at 10,000 g for 45 s and 180 μl of sterile water was 192 

added. The DNA extract was centrifuged for another 5 minutes at 10,000 g at 4°C and 193 

preserved at -20°C. For the direct DNA extraction from root nodules, genomic DNA of 194 
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surface-sterilized nodules was obtained using the E.Z.N.A.TM HP Plant DNA Mini Kit 195 

(Omega bio-tek) as per manufacturer’s instructions. 196 

PCR amplification of 16S rRNA used universal bacterial primers (27f and 1492r) as 197 

previously described (37). Amplicons of nearly complete 16S rRNA were sequenced and 198 

subjected to BLAST analyses on GenBank as a first identification tool. Amplification of the 199 

recA housekeeping gene and the nodA nodulation gene was carried out with the primers 200 

recA-63F, recA-504R, nodA-1F, nodA-2R and PCR parameters as described by Gaunt et al. 201 

(38) and Haukka et al. (39). Amplification of the nodC nodulation gene was carried out for 202 

selected Fynbos isolates, using the primers nodC-540 and nodC-1160. All primer sequences 203 

are listed in Table S3.  204 

Amplified 16S rRNA products from total genomic DNA extractions of the nodules were 205 

cloned into a pGEM-T vector (Promega), according to the manufacturer’s instructions, and 206 

transformed into JM109 E. coli by heat shock (40). Purified plasmids and all PCR products 207 

were sent to Macrogen for sequencing (Macrogen Inc, Seoul, Korea). Sequencing primers for 208 

16S rRNA, recA and nodA were the same as for the initial PCR. 209 

 210 

Authentication of cultured rhizobia from field nodules 211 

Nodulation capabilities of isolates from field nodules were tested on siratro (Macroptilium 212 

atropurpureum) (36). Table S2 lists the authenticated isolates in this study together with 213 

previously tested strains (26). Rhizobial isolates from nodules of legume species (Dipogon 214 

lignosus, Indigofera filifolia, Podalyria calyptrata and Psoralea pinnata) grown in the 215 

greenhouse were authenticated on their respective host. Nodulation (three replicates) was 216 

assessed by either inoculating seedlings with a rhizobial culture (OD600) or leaving them 217 

uninoculated as negative controls. Authentication was confirmed if isolates nodulated the 218 
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 10 

roots of inoculated plants from all replicated pots, and the uninoculated plants remained 219 

nodule-free. 220 

 221 

Phylogenetic analyses of the 16S rRNA, recA and nodA sequence data 222 

Sequence reads were assembled and sequence alignments were created with Muscle (32) 223 

using Geneious v.5.1.7 (http://www.geneious.com). For the combined phylogeny of 16S 224 

rRNA and recA, missing sequences due to the lack of amplification were treated as missing 225 

data. Phylogenetic relationships were conducted using Bayesian Inference (BI) and 226 

Maximum Likelihood (ML) optimality criteria. Bayesian analyses were carried out in 227 

MrBayes v.3.1 (41) after determining the appropriate model of evolution with MrModeltest 228 

v.3.06 (42) under the Akaike information criterion. Modeltest selected for the 16S rRNA, 229 

recA and nodA datasets the GTR+I+G model. Four Markov Chains were run simultaneously 230 

for four million generations, sampling every 100 generations. The initial 25% of trees were 231 

regarded as “burnin” and discarded. Convergence of the chains was checked using Tracer 232 

v.1.4 (43). ML analyses were performed using RAxML-VI-HPC v.7.0.4 (44). A total of 100 233 

RAxML searches were conducted, relying on the GTR-GAMMA model of evolution. 234 

Support values were estimated using a multi-parametric bootstrap resampling with 1000 235 

pseudo-replicates.  236 

 237 

Geographic distances among Fynbos representatives 238 

The genetic variation of rhizobia across spatial scales in the Fynbos was calculated on both 239 

chromosomal (recA) and nodulation (nodA) data. Genetic distance matrices for both sets of 240 

genes was constructed including our Fynbos isolates and supplemented with previously 241 

described rhizobial strains (see Fig. 1). The recA and nodA datasets comprised 134 and 128 242 

sequences, respectively, covering genera of the tribes Podalyrieae (Amphithalea, Cyclopia, 243 
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 11 

Podalyria, Virgilia), Crotalarieae (Aspalathus, Crotalaria, Rafnia), Hypocalypteae 244 

(Hypocalyptus), Phaseoleae (Bolusafra, Dipogon) and Indigofereae (Indigofera). Genetic 245 

variation of all pairs of isolates was linked with a geographic distance matrix calculated from 246 

their geographic coordinates using the Geographic Distance Matrix Generator, v.1.2.3 (Ersts, 247 

American Museum of Natural History, Center for Biodiversity and Conservation). Values of 248 

genetic variations were grouped within geographic distance classes (0-200, 201-400, 401-249 

600, 601-800 km) and plotted as box plots in R v.2.15.3 (45). The correlation between 250 

genetic similarities and geographic distances was investigated using a Mantel test in 251 

Genealex 6.501 (46), and its significance was tested on 9.999 permutations. 252 

 253 

Trapping experiment 254 

The legume species Dipogon lignosus (L.) Verdc. (Phaseoleae), Indigofera filifolia Thunb. 255 

(tribe Indigofereae), Macroptilium atropurpureum (DC.) Urb. (siratro; tribe Phaseoleae), 256 

Mimosa pudica L. (tribe Mimoseae), Podalyria calyptrata C.A. Sm. (Podalyrieae) and 257 

Psoralea pinnata L. (Psoraleeae) were grown in soil samples from Malawi (Chinyonga, 258 

Blantyre - S15.819431, E35.041753) and South Africa (Table Mountain National Park - 259 

S33.952532, E18.456871). Both sites are part of natural ecosystems with no history of 260 

cultivation or rhizobial inoculation. At each locality, soils were sampled from the top 0-20 261 

cm from at least three field sites and bulked to generate a composite sample for rhizobial 262 

isolation. Soil pH was determined from 4 g samples of sieved (1 mm mesh) mixed in 40 ml 263 

1M KCl. 264 

The Cape legume species I. filifolia and P. calyptrata are endemic to the Western Cape 265 

Province of South Africa. Psoralea pinnata, also endemic to the Fynbos, became naturalized 266 

and invasive in South Australia and New Zealand (47). Dipogon lignosus and M. pudica, 267 

which are native to South Africa and South America respectively, are also considered as 268 
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 12 

invasive (48,49). All legume species of the trapping experiment, except for Ps. pinnata, 269 

which is strictly associated with Mesorhizobium (alpha-class of Proteobacteria) (26), have 270 

been shown to form associations with Burkholderia. (26,49,50). Siratro is a widely used 271 

species known to be very promiscuous with regard to symbionts (51) and was proven 272 

previously to be effectively nodulated by Burkholderia tuberum (29,52).  273 

Nodulation was assessed by growing germinated seedlings (three replicates) in 20 cm 274 

diameter plastic pots filled with acid-washed sterile sand and a layer of 200 g of soil (the 275 

layer of soil was omitted from negative control pots). Seeds were surface-sterilized in 4% 276 

(w/v) sodium hypochlorite for 10 min., rinsed in six changes of sterile water, soaked in 277 

boiled water and pre-germinated at room temperature on 1.5% (w/v) agar plates until root 278 

emergence. Pots were covered with a layer of nylon PA6 beads (Lomold group HQ, South 279 

Africa) and provided with a sterile watering tube to prevent cross-contamination. All plants 280 

were watered with sterile de-ionized water every two days. Nodules were harvested from 281 

seedlings after two months and rhizobia were isolated on YEMA as previously described.  282 

 283 

Host range study 284 

Seeds of legume species from the tribes Crotalarieae, Hypocalypteae, Indigofereae and 285 

Podalyrieae were used for this study. Seeds were surface-sterilized with concentrated 286 

sulphuric acid for 10 min. followed by 4% sodium hypochlorite for 10 min. Seedlings were 287 

grown in glass tubes with a sterile mixture of Vermiculite/Perlite as a rooting medium and fed 288 

with Jensens N-free plant nutrient medium under aseptic conditions (53). After one week of 289 

plant cultivation, seedlings were inoculated with the wild type strains B. tuberum STM678T 290 

and B. phymatum STM815T (54). Plants were harvested after 6 weeks and inspected for 291 

nodule formation and the potential ability to perform symbiotic nitrogen fixation was assessed 292 

by the presence of leghemoglobin (Lb). In addition, nodules were fixed and embedded for 293 
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 13 

light microscopy to assess their internal structure, as this is also a strong indicator of 294 

effectiveness (26,55). Three species of Podalyria and one Virgilia species, V. oroboides (tribe 295 

Podalyrieae), were also inoculated with a GFP-marked B. tuberum STM678 variant strain 296 

(29); nodule preparation and morphological observation of the STM678-GFP construct in 297 

nodule sections, using light and fluorescence microscopy, are according to (29). Uninoculated 298 

plants served as controls. 299 

 300 

Nucleotide sequence accession numbers 301 

The 16S rRNA sequences were deposited in the GenBank database under the accession 302 

numbers KF791602-KF791673 and KF824727-KF824733. The recA sequences were 303 

deposited under accession numbers KF791796-KF791864, KF824747-KF824753, KP013139-304 

PK013158 and KT700208-KT700213. Sequences for the nodA sequences were deposited 305 

under the accession numbers KF791743-KF791795, KF824740-KF824746, KP013159-306 

KP013178 and KT700202-KT700207. Sequences for the nodC sequences were deposited 307 

under the accession numbers KP013126-KP013137. 308 

309 
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Results 310 

16S rRNA gene sequence cut-off levels used for (putative new) species delineation  311 

A large 16S rRNA dataset comprising 75 validly named Burkholderia species was 312 

constructed to evaluate the genetic diversity of Burkholderia at five different sequence 313 

similarity threshold values ranging from 97% to 99% (Fig. S1). A sequence similarity level 314 

to delineate the true number of sequences at species level was obtained between a cut-off 315 

value of 98.5% and 99%, resulting in 59 and 96 OTUs. Although there is some controversy 316 

about the concept of a species in prokaryotes (56-59) the results of the empirical clustering 317 

analysis, using 16S rRNA data, support 98.5% as a conservative threshold value for species 318 

level definitions within Burkholderia and corresponds to the general threshold value of 319 

98.65% estimated to delineate the global prokaryotic diversity (60). A 98.5% threshold value 320 

was used for further diversity calculations of 16S rRNA datasets.  321 

 322 

Phylogenetic clustering of the Burkholderia richness according to geography and legume 323 

subfamily  324 

The diversity of root-nodulating Burkholderia was classified according to geography and 325 

their hosts for different DNA regions (16S rRNA, nifH, nodA and nodC). Table 1 shows the 326 

16S rRNA OTUs and clusters of symbiosis genes calculated at a cut-off value of 98.5%, 327 

which are identified from different continents and host associations occurring across 328 

continents and legume subfamilies. From a total of 23 16S rRNA OTUs, eight groups 329 

occurred on more than one continent, including one OTU (number 5) globally distributed 330 

across all four continents assessed and three OTUs (numbers 1, 5 and 12) associated with 331 

both legume subfamilies (Table 1). Burkholderia tuberum (OTU number 1) was a highly 332 

recorded species (107 16S rRNA sequences) associated with eight South African genera 333 

(Amphithalea, Aspalathus, Cyclopia, Hypocalyptus, Lebeckia, Podalyria, Rhynchosia and 334 
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Virgilia) and from field nodules of the South American genus Mimosa (Table 1). Six OTUs 335 

(numbers 4-8 and 15) comprised symbionts of invasive Mimosa species, recorded from South 336 

America, as well as their invasive regions in Asia and Australia (Table S1).  337 

In contrast to 16S rRNA, fewer nodulation and nitrogen fixation types were shared among 338 

continents, including only four nifH (numbers 2, 4, 5 and 9), five nodA (numbers 3, 5, 6, 10 339 

and 16) and three nodC (numbers 4, 9 and 10) types. One group of nodC (type number 4) and 340 

one group of nifH (type number 4) sequences were globally distributed on all the four 341 

continents. A total of five sequence clusters were shared between both subfamilies for nifH 342 

(numbers 1 and 4), nodA (numbers 3 and 14) and nodC (number 4). All nodA and nodC 343 

sequence clusters associated with both legume subfamilies originate from mimosoids and 344 

from the papilionoid hosts Macroptilium and Phaseolus. 345 

Phylogenetic NeighborNet analyses for chromosomal (16S rRNA), nitrogen fixation (nifH), 346 

and nodulation (nodA and nodC) genes revealed the genetic divergence and clustering among 347 

sequence types and their affinities for a geographical locality and legume subfamily (Fig. 2). 348 

The genetic distances, proportional to evolutionary divergences, were more pronounced for 349 

the symbiosis genes (nifH, nodA and nodC) than for the conservative 16S rRNA gene. For 350 

16S rRNA, phylogenetic relationships among OTUs were not structured by geography nor 351 

host (Fig. 2A). Large genetic clusters contained OTUs from different continents and 352 

subfamilies, confirming the previous observation of shared 16S rRNA types across localities 353 

and hosts (Table 1). In contrast to 16S rRNA, NeighborNet analyses of nitrogen fixation 354 

(nifH) (Fig. 2B) and nodulation (nodA and nodC) genes (Fig. 2C-D) identified a strong 355 

pattern according to geography and host. Genetic clusters were identified, separating the 356 

African papilionoids from the South American and Asian mimosoid representatives.  357 

 358 

 on July 8, 2016 by U
niv of D

undee
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


 16 

Burkholderia diversity, specificity and geographical distribution in legumes of the Fynbos 359 

biome 360 

In order to investigate the biodiversity and geographic distribution of Burkholderia at a 361 

smaller spatial scale, rhizobia of diverse indigenous Fynbos species were sampled and 362 

analyzed using a combination of culture and non-culture based identification techniques. 363 

Initially, a standard culture method was applied to selected legume lineages covering most 364 

legume groups (Table S2; Amphithalea, Aspalathus, Bolusafra, Crotalaria, Dipogon, 365 

Hypocalyptus, Indigofera, Podalyria, Rafnia, Rhynchosia and Virgilia) and all rhizobia were 366 

identified as Burkholderia, showing only a single colony morphotype in each root nodule. 367 

All cultured strains were authenticated using siratro (Table S2), showing effective nodules 368 

and enhanced plant growth compared with nodule-free controls. Only the strain from Rafnia 369 

acuminata (Dlodlo 22) failed to form effective nodules on siratro and so was not regarded as 370 

a rhizobial symbiont.  371 

In addition, a culture independent approach was performed using direct PCR analyses to 372 

assess the nodule rhizobial diversity and to confirm single strain occupation within a nodule. 373 

PCR amplifications on the total genomic DNA extraction of the intranodular tissue produced 374 

high quality and single-copy sequences for all genetic markers investigated, suggesting one 375 

dominant Burkholderia strain as nodule resident. Amplified 16S rRNA products were cloned 376 

for available nodules in selected species within genera of two legume tribes (Podalyria: 377 

Muasya, 6490; 6463 and Indigofera: Muasya & Stirton, 6502B; 6502C) to test the one-378 

symbiont one-nodule specificity. For all samples investigated, similar 16S rRNA clones (20 379 

per sample) were obtained showing a single bacterial endosymbiont in each nodule.  380 

Sequence data of 16S rRNA, recA and nodA from rhizobia of 26 Podalyrieae (13 individuals, 381 

3 genera), 11 Indigofereae (8 individuals, 1 genus), 4 Hypocalypteae (2 individuals, 1 genus), 382 

15 Crotalarieae (6 individuals, 3 genera) and 16 Phaseoleae (9 individuals, 3 genera) were 383 
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analyzed with Maximum Likelihood and Bayesian phylogenetic analyses (Figs. 3-4), 384 

clustering the isolates within diverse reference strains, comprising root-nodulating (B. 385 

dilworthii WSM3556T, B. dipogonis LMG19430T, B. kirstenboschensis Kb15T, B. 386 

rhynchosiae WSM3937T, B. sprentiae WSM5005T, B. tuberum STM678T) and plant-387 

beneficial (B. phytofirmans PsJNT, B. xenovorans LB400T) lineages. Our isolates from 388 

various host legumes (e.g. Amphithalea, Aspalathus, Indigofera, Rafnia, Rhynchosia, 389 

Podalyria) were closely related to nodulated representatives (B. kirstenboschensis, B. 390 

rhynchosiae, B. tuberum) of the current Fynbos record, but the majority of isolates appeared 391 

to be related to bacteria without generally nodulating traits (B. phytofirmans, B. xenovorans) 392 

or were grouped apart into clusters without known reference species (Fig. 3).  393 

Analyses of rhizobial lineages in relation to their geographical provenance showed many 394 

widely distributed 16S rRNA OTU types, suggesting genetic similarity of Burkholderia in 395 

Fynbos soils. To evaluate the diversity of Fynbos rhizobia in relation to geography at a 396 

regional scale, we investigated spatial structuring by the common approach of isolation by 397 

distance (61), assuming that geographic distance and population genetic differentiation are 398 

expected to correlate positively because population connectivity occurs more frequently 399 

among adjacent habitats. For close and distantly located populations, genetic variation was 400 

examined among Burkholderia strains, showing no effect of geographical distance on the 401 

genetic distance for both recA and nodA sequence data (Fig. 5). Genetic differentiation was 402 

constant among the different distance classes (0-200; 201-400; 401-600; 601-800 km), 403 

showing mean values of genetic similarities of ca. 94% and 96% for recA and nodA, 404 

respectively (Fig. 5). A Mantel test examined the associations between pairwise differences 405 

in genetic and geographical distances, rejecting an effect of geographical distance on the 406 

genetic Burkholderia variation (P > 0.05). 407 
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Similar to geography, no link was observed between Burkholderia strains and host genotype. 408 

For the majority of hosts, different populations of one legume species were associated with a 409 

set of genetically diverse strains of Burkholderia for both chromosomal and nodulation data 410 

(Figs. 3-4). Sequence analyses showed that a given Burkholderia lineage was associated with 411 

different legume lineages and in turn these host plants accommodated genetically diverse 412 

symbionts.  413 

Nodulation of Cape legumes in African soils and identity of rhizobial groups 414 

Nodulation of the legumes I. filifolia, P. calyptrata and Ps. pinnata, which are restricted in 415 

distribution to the Cape Fynbos biome, and the widely distributed species D. lignosus and M. 416 

pudica was assessed in South African (Fynbos region) and Malawian (Savanna grassland) 417 

soils. The pH of the soil from the Fynbos (pH = 4.6 ± 0.2) was substantially lower than at the 418 

Savanna site (pH = 7.1 ± 0.3). Distinct symbiotic associations were found among the 419 

legumes with a strong influence of the source of soils on the rhizobia sampled (Figs. 6-7). 420 

Podalyria calyptrata (Podalyrieae), I. filifolia (Indigofereae) and D. lignosus (Phaseoleae) 421 

were exclusively nodulated by Burkholderia in Fynbos soil, with the exception of one 422 

Bradyrhizobium isolate associated with D. lignosus that was from Fynbos soil. None of these 423 

legume species nodulated in Malawian soil, except Ps. pinnata (Psoraleeae) and siratro 424 

(Phaseoleae) that were able to form nodules in both soils (Table S4), with isolates identified 425 

as Mesorhizobium (Ps. pinnata – Fynbos), Burkholderia (siratro – Fynbos) and 426 

Bradyrhizobium (Ps. pinnata, siratro – Malawi). Mimosa pudica formed no nodules in either 427 

the South African or the Malawian soils. 428 

The Burkholderia and Mesorhizobium symbionts isolated from legumes growing in Fynbos 429 

soils were placed in different clades (Figs. 6-7) and were highly related (99-100% sequence 430 

similarity) to known reference strains previously isolated from various South African 431 

legumes (Table S4). The recA and nodA sequence data of bradyrhizobia symbionts from the 432 
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Malawian soils were related (97-99%) to known African, South American and European 433 

isolates (Table S4). 434 

 435 

Host range of Burkholderia tuberum and B. phymatum among South African legumes  436 

The host range experiment showed that all legumes from the tribes Crotalarieae, 437 

Hypocalypteae, Indigofereae and Podalyrieae were able to nodulate successfully with the 438 

type strain of B. tuberum, STM678T, except for four Calpurnia species, which either did not 439 

produce nodules (C. aurea and C. intrusa) or showed ineffective nodulation (C. glabrata 440 

and C. sericea) (Table 2; Fig. S2). All legume species assessed in the host range experiment 441 

are native Fynbos species, except for Calpurnia, where only C. intrusa is found in the 442 

karroid vegetation near the Fynbos-dominated Swartberg Mountains. The presence of B. 443 

tuberum in the nodule structure was confirmed in Podalyria and Virgilia species by 444 

fluorescence microscopy of the GFP transconjugant strain of STM678 (Fig. 8), and in all the 445 

other species by immunogold labelling with a Burkholderia-specific antibody (Fig. S2). The 446 

type strain of Burkholderia phymatum, STM815T, formed functional nodules on four native 447 

Fynbos legume species of the tribe Podalyrieae (Cyclopia and Virgilia), whereas other 448 

species of the genera Amphithalea (tribe Podalyrieae), Hypocalyptus (tribe Hypocalypteae), 449 

Aspalathus and Lebeckia (both tribe Crotalarieae) produced ineffective nodules or remained 450 

nodule-free (Table 2; Fig. S2). 451 

452 
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Discussion 453 

Spatial distribution of root nodulated Burkholderia at continental scale 454 

The global survey of the Burkholderia record revealed various geographical and host-related 455 

patterns within the 16S rRNA and nifH, nodA and nodC datasets at a continental scale. 456 

Chromosomal 16S rRNA types were highly diverse (Fig. 2A, Table 1) and unrelated to the 457 

host subfamily or geographical region, whereas nitrogen fixation and nodulation genes are 458 

clearly structured by a geographical and host factor (Fig. 2B-D) with only a few sequence 459 

groups identified across continents and legume subfamilies (Table 1). The observation of an 460 

association between geography, host legume and nodulation genes, showing two large 461 

clusters of highly diverged nodulation gene types, according to their geographical origin and 462 

host subfamily, corroborates previous Burkholderia studies (12,19). All African distributed 463 

rhizobia were clustered in one group, and were highly diverged (<75% gene similarity) from 464 

the remaining mimosoid-related Burkholderia. 465 

The geographical distribution of the legume host seems to be the key factor, explaining the 466 

nodulation and nitrogen fixation gene phylogenetic structure at a continental scale, 467 

supporting the idea that the rhizobial biogeography largely follows their hosts (20), which 468 

represent two distinct legume floras of South African papilionoids and South American 469 

mimosoids in the Fynbos and Cerrado/Caatinga biomes, respectively (12,62). Evidence is 470 

accumulating that the vast majority of Mimosa species native to central Brazil are exclusively 471 

associated with Burkholderia (10,55), whereas in Mexico, which is considered as another 472 

large centre of radiation of the genus, most endemic species are not nodulated by beta-473 

rhizobia (17), but are specifically associated with alpha-proteobacteria and only a few 474 

lineages are able to form interactions with Burkholderia (11,63). Distinct nodule occupancies 475 

of beta- and alpha-rhizobia within the native home range of Brazilian and Mexican Mimosa 476 

species, respectively, can be largely explained by a combination of geographical separation 477 
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of the various Mimosa clades with distinct symbiont preferences, and their subsequent co-478 

evolution with rhizobia in contrasting soil types (e.g. acid versus neutral/alkaline soils) (11). 479 

Conversely, access and availability of rhizobia, due to varied adaptation to edaphic and 480 

climatic factors, may be a critical factor governing dispersal of legumes outside native areas 481 

and thereby influence legume biogeographic patterns. The latter may be true for South Africa 482 

and Western Australia, which have frequent angiosperm dispersal events in the Cenozoic 483 

(64), associated with similarity of niches (Mediterranean climate, oligotrophic acidic soils), 484 

yet legumes are one of the few (large) families that do not exhibit disjunction between the 485 

two continents. While the endemic Australian tribes Bossiaeeae and Mirbelieae are largely 486 

associated with Bradyrhizobium lineages (65,66), the tribe Hypocalypteae, which is endemic 487 

to South Africa and resolved as a sister group to the mirbelioids is strictly associated with 488 

Burkholderia. 489 

The nodulation genes nodA and nodC are frequently used to understand the symbiotic 490 

specificities and their evolutionary adaptation to a specific host (67). Because nodulation 491 

genes are involved in the synthesis of Nod-factors (i.e. rhizobial signaling molecules required 492 

for the earliest host responses) they determine the host specificity (68-70) and have been 493 

frequently shown to align with their Burkholderia host (12,17,28). The specificity of the 494 

symbiotic association of Burkholderia with mimosoid and papilionoid legumes is clearly 495 

demonstrated in one single species, B. tuberum, which has distinct nodulation genes or 496 

symbiotic variants and has been ascribed to symbiovars mimosae and papilionoideae, 497 

respectively (71,72). However, a link between nodA types and the legume subfamily is not 498 

strictly predictable for all species. Macroptilium atropurpureum (siratro, Papilionoideae) for 499 

example, known as a valuable plant for trapping a broad range of alpha- and beta-rhizobia 500 

(52), is able to nodulate with both B. tuberum sv. papilionoideae (e.g. STM678T) (29) and sv. 501 

mimosae strains (e.g. STM4801) (71). Similarly, the mimosoid symbiont B. phymatum 502 
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STM815T has been isolated from nodules of the papilionoid P. vulgaris, which is known for 503 

its wide range of symbiotic partners (31). Apart from the records involving promiscuous host 504 

legumes (siratro, P. vulgaris), Burkholderia species and their nodulation genes appear to 505 

group and evolve in close concert with their mimosoid and papilionoid hosts. However, 506 

evidence is accumulating that, although rhizobial species (e.g. B. tuberum sv. papilionoideae) 507 

associated with the subfamily of Papilionoideae appear incapable of nodulating mimosoid 508 

hosts (29), the opposite is not the case (12). In addition to common bean (73), diverse 509 

papilionoids such as the Fynbos species Dipogon lignosus (49) and legumes of the genera 510 

Cyclopia and Virgilia (Table 2, Fig. S2) have been demonstrated to form effective nodules 511 

with the mimosoid-nodulating B. phymatum-type symbiont (17, 74), confirming its broad 512 

host range and ability to associate with legumes of the mimosoid and papilionoid subfamily.  513 

While symbiosis genes are largely structured according to legume subfamily, 16S rRNA 514 

clusters are more diverse (Fig. 2A), affiliated with various hosts from different parts of the 515 

world (Table 1). A widespread occurrence of Burkholderia strains, especially for 16S rRNA 516 

types (Table 1), indicates an inter-continental and global distribution pattern for different 517 

strains of burkholderias (e.g. B. diazotrophica, B. mimosarum, B. phymatum, B. sabiae and 518 

B. tuberum). The occurrence and vast diversity of Burkholderia outside Africa and South 519 

America are mostly recorded from pan(sub)tropically distributed Mimosa species (M. 520 

pudica, M. pigra, M. diplotricha). Burkholderia symbionts of these widespread invasive 521 

plant species are included in the clustering analyses and close relationships of nodulation 522 

genes with their native distributed relatives support previous observations that rhizobia are 523 

co-transported with the seeds or plants from their native to new invasive habitats. Following 524 

the co-introduction hypothesis (75), symbionts that have been co-introduced with their hosts 525 

or which have hitchhiked on introduced material over long-distances, bridging geographical 526 

barriers between continents, has been evidenced in many studies (15,49,76-78). For 527 
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Burkholderia, a plausible long-distance migration event from South Africa to New Zealand, 528 

possibly dispersed across the Australian continent, has been reported in the South African 529 

papilionoid Dipogon lignosus (tribe Phaseoleae) (79), which is invasive in New Zealand and 530 

Australia (49, 79) as revealed by high sequence similarities of the symbiosis genes (nodA 531 

sequence clusters 6, 10; nodC sequence clusters 9, 17) between invasive populations of 532 

Dipogon and native South African relatives from the genera Bolusafra, Crotalaria, 533 

Cyclopia, Hypocalyptus, Indigofera, Podalyria and Rhynchosia.  534 

 535 

Geographical distribution and specificity of Fynbos Burkholderia 536 

While the global Burkholderia diversity was structured for the nodulation genes at legume 537 

subfamily level, an interaction between rhizobia, host legumes and geographical distribution 538 

was not shown at regional scale, showing widely spread and locally diverse Burkholderia 539 

populations in the Fynbos. Our results corroborate a previous study, demonstrating the 540 

widespread occurrence of Burkholderia and the absence of a site sampling effect on the 541 

rhizobial diversity of selected Hypocalypteae and Podalyrieae species (24,30). Using 542 

geographical distances as a proxy for population connectivity, genetic variation is expected 543 

to correlate positively with the sampling site distances. Our study does not show any 544 

correlation between genetic variation and geographical distance, suggesting the absence of 545 

genetic isolation through high rates of rhizobial dispersal of both chromosomal and 546 

symbiosis traits.  547 

In the Fynbos region, local environmental variables, rather than spatial dispersal factors, are 548 

most likely the major ecological drivers for rhizobial distributions. In a recent study, Lemaire 549 

and associates (26) showed that genetic variation of Fynbos Burkholderia was correlated 550 

with differences in site elevation, a feature also observed in symbionts of South American 551 
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Mimosa species (10); hence the indirect effects of temperature and rainfall may play a 552 

significant role in the rhizobial community structure.  553 

Symbiotic associations of Fynbos legumes for Burkholderia have been described in many 554 

lineages with various degrees of specificity. In the tribe Podalyrieae, a strong preference for 555 

Burkholderia is observed, showing all legume species and genera (except for Calpurnia 556 

which is not endemic to the Fynbos – Table 2, Figure S2) strictly nodulated with 557 

Burkholderia (12,24,26). Other common plant groups such as the tribes Crotalarieae and 558 

Indigofereae also contain Burkholderia-philous species, although (closely related) legume 559 

lineages within the same tribes and co-occurring in the similar habitats have been recorded 560 

with classical alpha-rhizobial lineages ((26) and references therein).  561 

In this study, the Burkholderia-legume interaction was further investigated at a finer 562 

taxonomic scale. Diverse phylogenetic clusters of Burkholderia strains were observed within 563 

native legume genera of the tribes Crotalarieae (Aspalathus, Crotalaria, Lebeckia, Rafnia), 564 

Indigofereae (Indigofera), Phaseoleae (Bolusafra, Dipogon, Rhynchosia), Podalyrieae 565 

(Amphithalea, Podalyria, Virgilia), but without a host specific pattern (Figs. 3-4). For both 566 

chromosomal and nodulation genes, the latter symbiotic genes determining host specificity 567 

(68), a relaxed association among genetically similar rhizobia and different legume species, 568 

genera and tribes was demonstrated. The variation of host-Burkholderia interactions 569 

corroborates a previous rhizobial screening in selected legume genera of the tribes 570 

Hypocalypteae (Hypocalyptus) and Podalyrieae (Cyclopia, Podalyria, Virgilia) (24,30). In 571 

South America, a similar relaxed host specific interaction has been described for 572 

Burkholderia and their mimosoid hosts (10,62). The predominance or prevalence of 573 

Burkholderia strains in both papilionoid and mimosoid legumes, but without a host specific 574 

pattern, indicates that the host genotype has not been a major factor on the local Burkholderia 575 

distribution. This observation is in line with the current host range study, showing selected 576 
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South African papilionoid species able to form effective nodules with the strains 577 

Burkholderia tuberum STM678T and Burkholderia phymatum STM815T. Strains of B. 578 

phymatum, which is found as a common symbiont of Mimosa in French Guiana, Papua New 579 

Guinea, India and China (12,16,17,71), has not been isolated from field nodules collected in 580 

the Fynbos, yet they are able to nodulate selected papilionoids (Dipogon, Cyclopia, Virgilia). 581 

The promiscuous character of the papilionoid-Burkholderia symbiosis has previously been 582 

demonstrated in other species of Podalyrieae (12) and Phaseoleae (29,49,52). 583 

Although Fynbos legumes were generally associated with diverse Burkholderia species, 584 

individual root nodules consistently accommodated a single strain. The observation of a 585 

single Burkholderia strain per nodule may suggest high selective constraints of the host 586 

towards their symbiont. In order to retain a stable and mutualistic interaction, legumes 587 

generally hinder the emergence of opportunistic rhizobial strains and select cooperative (i.e. 588 

effectively nitrogen-fixing rhizobia) ones over non-beneficial symbionts (referred to as 589 

partner choice) (80,81) by providing only one beneficial symbiont with ample carbon 590 

resources while an uncooperative nodule occupant is disfavored with host resources (referred 591 

to as host sanctions) (82,83). However, the general observation of a relaxed interaction or 592 

accommodation of diverse rhizobial strains per host individual may indicate that the one-593 

nodule one-strain interaction is a result of high competitiveness for nodulation among 594 

rhizobial strains, rather than to selection by the host plant.  595 

 596 

Nodulation of Fynbos legumes outside their distribution range  597 

A legume growing in non-native soil can only form nodules when naturalized populations of 598 

compatible rhizobia are available in the soil. In our inoculation experiment, siratro and Ps. 599 

pinnata nodulated in soils collected from South Africa and Malawi, whereas P. calyptrata, I. 600 

filifolia and D. lignosus were nodule-free in the Malawian soil. The inability to form nodules 601 
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in Malawian soil suggests that these legumes, known to exhibit a strong host preference for 602 

Burkholderia (24,26,84), did not find their specific Burkholderia symbionts in the Malawian 603 

(Savanna) soil, which was substantially higher in pH compared to the Cape soil. The 604 

occurrence and success of Burkholderia in South African (Fynbos) soils, but also in the 605 

South American Cerrado/Caatinga biomes, can be linked with the general ecological 606 

adaptation of these symbionts to acidic soil conditions, which may play a prominent role as 607 

ecological driver on the rhizobial diversity (19,27,28,32). In Malawi, legume nodulation by 608 

Burkholderia has never been reported as far as we know, and further Burkholderia surveys in 609 

other African soils are needed to provide evidence for a more limited distribution pattern on 610 

the African continent with the Fynbos biome reported as a major center of diversity.  611 

The inability of legumes to form a symbiosis with Burkholderia in Malawian soils does not 612 

necessarily indicate the absence of Burkholderia in other regions of Africa (e.g. see report of 613 

Burkholderia nodulating the non-native common bean in Moroccan soil (31)), but may also 614 

result from incompatible types of symbiosis genes within local Burkholderia communities. In 615 

this context, the observation that Mimosa pudica is unable to nodulate within the 616 

Burkholderia-rich Fynbos soils, strongly suggests that the necessary mimosoid type 617 

nodulation genes (which are genetically distinct from the papilionoid type nodulation genes) 618 

are not naturally occurring in these soils. The absence of effective rhizobia and their 619 

compatible symbiosis genes is a potential barrier to the colonization of novel habitats by the 620 

host legumes. For exotic legumes such as Mimosa pudica, it appears that the host needs to 621 

bring its own native symbionts into the new environment for an optimal and successful 622 

colonization and distribution (15,16). 623 

In contrast to legumes with a specific preference for Burkholderia, Ps. pinnata was nodulated 624 

by Mesorhizobium in Fynbos soils and by Bradyrhizobium in Malawian soil, indicating a 625 

more relaxed interaction, albeit one that does not involve beta-rhizobia. Although field 626 
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nodules of this genus have been consistently associated with Mesorhizobium in the Fynbos 627 

(26), Bradyrhizobium was also able to nodulate Psoralea effectively, probably in the absence 628 

of their preferred Mesorhizobium symbionts in these Savanna soils. The genus Psoralea has a 629 

centre of diversity in the Fynbos but several species occur in montane grasslands in North-630 

Eastern South Africa, Mozambique and Swaziland, and two species are naturalized in 631 

Australia (47). The current Mesorhizobium diversity from Fynbos Psoralea has been placed 632 

in a separate cluster unrelated to known 16S rRNA or nodA gene types from other African 633 

localities, suggesting rhizobial strains restricted to the Cape region. The Bradyrhizobium 634 

isolates from the Malawian soils, however, were closely related to B. elkanii, and are 635 

geographically widespread and able to nodulate a broad range of legumes from different 636 

continents (65,85-88). In a recent study by Parker (89), a phylogenetic analysis on a broad 637 

sampling of Bradyrhizobium strains from diverse plant groups provided evidence for a broad 638 

host range of most bradyrhizobia lineages, including B. elkanii, that are associated with 639 

diverse legume tribes. 640 

 641 

Concluding remarks 642 

Burkholderia populations, like many free-living microbes and other (classical) rhizobial 643 

groups, are widespread and occur on different continents (except Antarctica and Europe), a 644 

phenomenon which can be explained by their capacity for long-distance dispersal. By 645 

investigating nodulation genes of publicly available sequence data, rather than taxonomic 646 

identities (16S rRNA types), we observed a strong biogeographic relationship, which 647 

corresponds largely to two main groups of Burkholderia with distinct host related affinities. 648 

Indeed, various phylogenetic studies have described taxonomically diverse papilionoid- and 649 

mimosoid-associated rhizobia with a geographical structure preserved in the nodulation 650 

genes (nodA and nodC), supporting the hypothesis that traits (i.e. nodulation genes) rather 651 
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than taxon names (i.e. chromosomal genes) are the fundamental units of biogeography (90). 652 

In contrast to the global investigation of Burkholderia, regionally distributed species in the 653 

Fynbos did not show any geographical distribution pattern. Within the Cape region, genetic 654 

variation for both chromosomal and nodulation genes was unrelated to geographical or host 655 

factors, suggesting that nodulating Burkholderia are omnipresent in the Fynbos biome and do 656 

not constrain the distribution of their native host legumes in terms of compatible symbionts.  657 
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Figure Legends 

Table 1.  

Occurrence of 16S rRNA OTUs and sequence clusters of symbiosis genes (nifH, nodA and nodC) shared among different continents (South 

America - SAM, Africa - AFR, Australasia - AUS and Asia - ASI) and host subfamilies (Mimosoideae - MIM and Papilionoideae - PAP). The 

host genera and reference strains of Burkholderia are listed per group (98.5% sequence similarity threshold value). - = not present 

1 Burkholderia phymatum STM815T was allegedly isolated from the papilionoid Machaerium lunatum in French Guiana but has never been 

proven to renodulate its original host (12) or an alternative Machaerium species (M. brasilense, (17)).  

16S rRNA OTU Geographic Distribution Host 
Subfamily Reference strain Host Genera of 

Mimosoideae Host genera of Papilionoideae 

 1 SAM-AFR MIM-PAP B. tuberum Mimosa Amphithalea, Aspalathus, Cyclopia, Hypocalyptus, Lebeckia, 
Macroptilium, Podalyria, Rhynchosia, Virgilia 

 3 AFR-AUS PAP B. dipogonis  - Bolusafra, Crotalaria, Cyclopia, Dipogon, Hypocalyptus, 
Podalyria, Rafnia, Virgilia 

 4 SAM-ASI-AUS MIM B. mimosarum Mimosa  - 

 5 SAM-AUS-ASI-AFR MIM-PAP B. phymatum Mimosa, Parapiptadenia, 
Piptadenia Machaerium1, Phaseolus 

 6 SAM-ASI MIM B. sabiae Abarema, Mimosa, 
Parapiptadenia - 

 7 SAM-AUS MIM B. diazotrophica Mimosa, Piptadenia, 
Anadenanthera - 

 8 SAM-AUS MIM - Mimosa - 

 12 AFR-SAM MIM-PAP - Mimosa Hypocalyptus 

 on July 8, 2016 by U
niv of D

undee
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


 37 

Sequence 
cluster nifH 
gene 

          

 1 SAM MIM-PAP B. tuberum Mimosa Macroptilium 

 2 AFR-AUS PAP B. tuberum - 
Amphithalea, Aspalathus, Crotalaria, Cyclopia, Dipogon, 
Hypocalyptus, Indigofera, Lebeckia, Podalyria, Rafnia, 
Virgilia 

 4 SAM-AUS-ASI-AFR MIM-PAP B. phymatum/B. 
diazotrophica 

Abarema, Anadenanthera, 
Mimosa Machaerium1, Phaseolus 

 5 SAM-ASI-AUS MIM B. mimosarum Mimosa - 

 9 AFR-AUS PAP B. rhynchosiae - Dipogon, Rhynchosia 
Sequence 
cluster nodA 
gene 

          

 3 SAM-ASI-AUS MIM-PAP1 B. phymatum Mimosa Machaerium1 

 5 SAM-ASI-AUS MIM B. mimosarum Mimosa  - 

 6 AFR-AUS PAP B. dipogonis - Crotalaria, Cyclopia, Dipogon, Hypocalyptus, Virgilia, 
Podalyria  

 10 AFR-AUS PAP B. rhynchosiae - Bolusafra, Dipogon, Indigofera, Rhynchosia 

 14 SAM MIM-PAP B. tuberum Mimosa Macroptilium 

 16 SAM-ASI MIM B. sabiae Mimosa - 
Sequence 
cluster nodC 
gene 

          

 4 SAM-AUS-ASI-AFR MIM-PAP B. phymatum/B. 
diazotrophica Anadenanthera, Mimosa Phaseolus 

 9 AFR-AUS PAP B. dipogonis - Crotalaria, Dipogon 

 10 SAM-ASI MIM B. mimosarum Mimosa - 
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Table 2.  
Nodulation of selected Fynbos species after inoculation with Burkholderia tuberum STM678T or B. phymatum STM815T. E = effective 

nodulation; I = ineffective nodulation, considered if inoculated plants are not greener than uninoculated controls and only few and white nodules 

are visible; -  = not tested. New reports of nodulation are indicated in bold. 

1Nodules tested with both Burkholderia tuberum STM678T and STM678GFP. 

*Data from Elliott et al. (29) 

 
 

Tribe Legume species tested Burkholderia tuberum STM678T Burkholderia phymatum STM815T 
Crotalarieae   

 
 

Aspalathus carnosa Bergius E no nodules 

 Lebeckia ambigua E.Mey. E no nodules 
Hypocalypteae   

 
 

Hypocalyptus coluteoides (Lam.) R.Dahlgren  E - 

 Hypocalyptus sophoroides (P.J.Bergius) Baill. E I 
Indigofereae   

 
 

Indigofera filifolia Thunb. E - 
Podalyrieae   

 
 

Amphithalea ericifolia (L.) Eckl. & Zeyh E I 

 Calpurnia aurea (Aiton) Benth. no nodules - 

 Calpurnia glabrata Brummitt I - 

 Calpurnia intrusa (W.T.Aiton) E.Mey. no nodules - 

 Calpurnia sericea Harv. I - 
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 Cyclopia subternata Vogel  E E 

 Cyclopia genistoides (L.) Vent. E* E 

 Cyclopia intermedia E.Mey. E* E 

 Liparia laevigata Thunb. E - 

 Liparia splendens (Burm.f.) Bos & de Wit E - 

 Podalyria burchellii DC. E - 

 Podalyria calyptrata (Retz.) Willd.  E1 - 

 Podalyria canescens E.Mey. E1 - 

 Podalyria leipoldtii L.Bolus  E - 

 Podalyria myrtillifolia Willd.  E1 - 

 Podalyria rotundifolia (P.J.Bergius) A.L.Schutte  E - 

 Podalyria sericea R.Br E - 

 Stirtonanthus taylorianus (L.Bolus) B.-E.van Wyk & A.L.Schutte E - 

 Virgilia oroboides (P.J.Bergius) T.M.Salter E1 E 

 Xiphotheca fruticosa (L.) A.L.Schutte & B.-E.van Wyk  E - 
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Figure 1 
Map of South Africa showing the geographical distribution of sampling sites within 

the Western and Eastern Cape Provinces. Records of our isolates are indicated with 

white squares, whereas samples from other studies are shown with black dots.  

 
Figure 2 
NeighborNet networks of (A) 16S rRNA, (B) nifH, (C) nodA and (D) nodC sequence 

types.  Sequence types exclusively recorded from one continent are shown by colored 

circles (Africa – green circles, South America – red circles, Asia – blue circles, 

Australasia – yellow circles). Numbers of sequence clusters sharing isolates from 

different continents and/or legume subfamily are shown in grey squares as listed in 

Table 1. Bootstrap support values below and above 50% are shown with grey and 

black branches, respectively. Scale bar represents substitutions per site. 

Figure 3 
Phylogenetic tree of rhizobial isolates of the Fynbos biome based on 16S rRNA and 

recA data. Support values for the Bayesian and Maximum Likelihood analyses are 

given at the nodes (Bayesian posterior probabilities – bootstrap support values for the 

Maximum Likelihood analysis). Reference strains are shown in bold.  

Figure 4 
Phylogenetic tree of rhizobial endosymbionts based on nodA data. Support values for 

the Bayesian and Maximum Likelihood analyses are given at the nodes (Bayesian 

posterior probabilities – bootstrap support values for the Maximum Likelihood 

analysis). Reference strains are shown in bold. 

Figure 5 
Box plots of pairwise genetic distances for (A) recA and (B) nodA sequence data 

grouped within four spatial distance classes (0-200; 201-400; 401-600-601-800 km). 

Box plots represent observations within 95% confidence intervals and the whiskers 
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extend from the box to the highest and lowest values, excluding outliers, which are 

shown as circles. The line across the box indicates the median.  

Figure 6 
Phylogenetic tree based on recA sequences of rhizobial isolates sampled from the 

trapping experiments. The closest reference strains obtained from BLASTN searches 

(see Table S4) are included in the analyses. Bayesian support values are given at the 

nodes. Geographic distribution of the isolates and reference strains are shown for each 

taxon. Number of substitutions per site is shown on the phylogram.  

Figure 7 
Phylogenetic tree based on nodA sequences of rhizobial isolates sampled from the 

trapping experiments. The closest reference strains obtained from BLASTN searches 

(see Table S4) are included in the analyses. Bayesian support values are given at the 

nodes. Geographic distribution of the isolates and reference strains are shown for each 

taxon. Number of substitutions per site is shown on the phylogram. 

Figure 8 
Fluorescence (A,C,E,F) and normal transmitted light (B, D) microscopy of sections 

(50 µm) from nodules of Podalyria calyptrata (A-B), P. canescens (C, D), P. 

myrtillifolia (E) and Virgilia oroboides (F) showing infected cells containing 

symbiotic bacteroids (*) as either green fluorescent (A, C, E, F) or dense opaque (B, 

D) regions in the nodule center. The green-yellow colour in the nodule cortex (A, C, 

E, F) results from autofluorescence of lignin and suberin. Bars = 100 µm. 
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Endosymbiont of Aspalathus callosa MM5477, R1
Endosymbiont of Aspalathus callosa MM5477, R2

Endosymbiont of Aspalathus callosa MM5477, R3

Endosymbiont of Aspalathus carnosa MM5496, R1
Endosymbiont of Aspalathus carnosa MM5496, R2

Endosymbiont of Aspalathus carnosa MM5496, R3

Endosymbiont of Crotalaria sp. OD120

Endosymbiont of Rafnia acuminata OD22

Endosymbiont of Rafnia angulata MM5486, R1
Endosymbiont of Rafnia angulata MM5486, R2
Endosymbiont of Rafnia angulata MM5486, R3

Endosymbiont of Rafnia sp. OD28, R1

Endosymbiont of Rafnia sp. OD28, R2
Endosymbiont of Rafnia sp. OD28, R3

Endosymbiont of Rafnia sp. OD28, R4

Endosymbiont of Hypocalyptus oxalidifolius MM6511, R1
Endosymbiont of Hypocalyptus oxalidifolius MM6511, R2

Endosymbiont of Hypocalyptus oxalidifolius MM6511, R3

Endosymbiont of Hypocalyptus sophoroides MM6669

Endosymbiont of Indigofera angustifolia MM5878

Endosymbiont of Indigofera cytisoides MM5819

Endosymbiont of Indigofera �lifolia MM6502B, R1
Endosymbiont of Indigofera �lifolia MM6502B, R2
Endosymbiont of Indigofera �lifolia MM6502C, R1
Endosymbiont of Indigofera �lifolia MM6502C, R2
Endosymbiont of Indigofera �lifolia MM6502C, R3
Endosymbiont of Indigofera �lifolia MM6502C, R4
Endosymbiont of Indigofera �lifolia MM6502C, R5

Endosymbiont of Indigofera ionii CS13775

Endosymbiont of Bolusafra bituminosa OD29

Endosymbiont of Bolusafra bituminosa BL3, R1

Endosymbiont of Bolusafra bituminosa BL3, R2

Endosymbiont of Bolusafra bituminosa BL4, R1
Endosymbiont of Bolusafra bituminosa BL4, R2

Endosymbiont of Bolusafra bituminosa BL7

Endosymbiont of Bolusafra bituminosa BL8

Endosymbiont of Bolusafra bituminosa MM5329, R1
Endosymbiont of Bolusafra bituminosa MM5329, R2
Endosymbiont of Bolusafra bituminosa MM5329, R3
Endosymbiont of Bolusafra bituminosa MM6595, R1

Endosymbiont of Bolusafra bituminosa MM6595, R2

Endosymbiont of Dipogon lignosus MM5812, R1
Endosymbiont of Dipogon lignosus MM5812, R2

Endosymbiont of Rhynchosia capensis MM6662, R1
Endosymbiont of Rhynchosia capensis MM6662, R2

Endosymbiont of Amphithalea ericifolia MM5482, R1
Endosymbiont of Amphithalea ericifolia MM5482, R2

Endosymbiont of Podalyria burchellii MM5875

Endosymbiont of Podalyria calyptrata OD25, R1

Endosymbiont of Podalyria calyptrata OD25, R2

Endosymbiont of Podalyria calyptrata OD25, R3

Endosymbiont of Podalyria calyptrata OD25, R4

Endosymbiont of Podalyria calyptrata MM5337, R1
Endosymbiont of Podalyria calyptrata MM5337, R2
Endosymbiont of Podalyria calyptrata MM5337, R3

Endosymbiont of Podalyria calyptrata MM5337, R4

Endosymbiont of Podalyria calyptrata MM6490, R1

Endosymbiont of Podalyria calyptrata MM6490, R2
Endosymbiont of Podalyria calyptrata MM6490, R3
Endosymbiont of Podalyria calyptrata MM6490, R4

Endosymbiont of Podalyria sericea BL55

Endosymbiont of Podalyria sericea MM5384

Endosymbiont of Podalyria sericea MM6463A, R1

Endosymbiont of Podalyria sericea MM6463A, R2
Endosymbiont of Podalyria sericea MM6463B

Endosymbiont of Podalyria sericea MM6463C

Endosymbiont of Virgilia oroboides OD116, R1

Endosymbiont of Virgilia oroboides MM5366, R1
Endosymbiont of Virgilia oroboides MM5366, R2
Endosymbiont of Virgilia oroboides MM5366, R3

Endosymbiont of Virgillia divaricata MM6592

100/90

Burkholderia tuberum STM678

Burkholderia sprentiae WSM5005
100/58

100/100

100/100

100/100

Burkholderia kirstenboschensis Kb15

Burkholderia dipogonsis LMG19430
Burkholderia phyto�rmans PsJN

Endosymbiont of Indigofera sp. MM5748

98/55

99/59

99/100

98/*

99/94

99/*

99/50

100/99

100/86

100/100
97/62

96/94

97/89

97/100

99/65

100/100

100/100

98/54

Burkholderia graminis C4D1M
Burkholderia dilworthii WSM3556 

Burkholderia xenovorans LB400

Burkholderia rhynchosiae WSM3937

Cupriavidus necator N1
Cupriavidus taiwanensis LMG19424

0.08 substitutions per site

*/87

*/52

*/99

*/63
*/54

*/60

*/73

*/68

*/52

*/53

*/61

*/65

*/66
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Endosymbiont of Rafnia sp. OD28, R1

Endosymbiont of Rafnia sp. OD28, R3
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Endosymbiont of Indigofera ionii CS13775

Endosymbiont of Bolusafra bituminosa OD29

Endosymbiont of Bolusafra bituminosa BL3, R1
Endosymbiont of Bolusafra bituminosa BL3, R2

Endosymbiont of Bolusafra bituminosa BL4, R1
Endosymbiont of Bolusafra bituminosa BL4, R2

Endosymbiont of Bolusafra bituminosa BL7

Endosymbiont of Bolusafra bituminosa MM5329, R2
Endosymbiont of Bolusafra bituminosa MM5329, R3

Endosymbiont of Bolusafra bituminosa MM6595, R1
Endosymbiont of Bolusafra bituminosa MM6595, R2

Endosymbiont of Dipogon lignosus MM5812, R1
Endosymbiont of Dipogon lignosus MM5812, R2

Endosymbiont of Podalyria burchellii MM5875

Endosymbiont of Podalyria calyptrata OD25, R1

Endosymbiont of Podalyria calyptrata OD25, R2

Endosymbiont of Podalyria calyptrata OD25, R3
Endosymbiont of Podalyria calyptrata OD25, R4

Endosymbiont of Podalyria calyptrata MM5337, R1

Endosymbiont of Podalyria calyptrata MM5337, R3
Endosymbiont of Podalyria calyptrata MM5337, R4

Endosymbiont of Podalyria calyptrata MM6490, R2
Endosymbiont of Podalyria calyptrata MM6490, R3

Endosymbiont of Podalyria sericea BL55
Endosymbiont of Podalyria sericea MM6463A, R1
Endosymbiont of Podalyria sericea MM6463A, R2

Endosymbiont of Podalyria sericea MM6463B

Endosymbiont of Virgilia oroboides MM5366, R1

Endosymbiont of Virgilia oroboides MM5366, R2
Endosymbiont of Virgilia oroboides MM5366, R3

Endosymbiont of Virgillia divaricata MM6592

Burkholderia kirstenboschensis Kb15

Burkholderia dipogonsis LMG19430

Burkholderia dilworthii WSM3556

Burkholderia rhynchosiae WSM3937

Endosymbiont of Crotalaria sp. OD120

Endosymbiont of Rafnia sp. OD28, R2

Endosymbiont of Aspalathus callosa MM5477, R1

Endosymbiont of Aspalathus carnosa MM5496, R1

Endosymbiont of Aspalathus carnosa MM5496, R3
Endosymbiont of Rafnia angulata MM5486, R1

Endosymbiont of Rafnia angulata MM5486, R3

Endosymbiont of Indigofera cytisoides MM5819

Endosymbiont of Rhynchosia capensis MM6662, R1

Endosymbiont of Rhynchosia capensis MM6662, R2

Endosymbiont of Amphithalea ericifolia MM5482, R2
Endosymbiont of Podalyria sericea MM5384

Burkholderia tuberum STM678

Burkholderia sprentiae WSM5005

Methylobacterium nodulans ORS2060

0.3 substitutions per site
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