13,248 research outputs found

    Coreness of Cooperative Games with Truncated Submodular Profit Functions

    Full text link
    Coreness represents solution concepts related to core in cooperative games, which captures the stability of players. Motivated by the scale effect in social networks, economics and other scenario, we study the coreness of cooperative game with truncated submodular profit functions. Specifically, the profit function f(⋅)f(\cdot) is defined by a truncation of a submodular function σ(⋅)\sigma(\cdot): f(⋅)=σ(⋅)f(\cdot)=\sigma(\cdot) if σ(⋅)≄η\sigma(\cdot)\geq\eta and f(⋅)=0f(\cdot)=0 otherwise, where η\eta is a given threshold. In this paper, we study the core and three core-related concepts of truncated submodular profit cooperative game. We first prove that whether core is empty can be decided in polynomial time and an allocation in core also can be found in polynomial time when core is not empty. When core is empty, we show hardness results and approximation algorithms for computing other core-related concepts including relative least-core value, absolute least-core value and least average dissatisfaction value

    Viscosity and thermal conductivity effects at first-order phase transitions in heavy-ion collisions

    Full text link
    Effects of viscosity and thermal conductivity on the dynamics of first-order phase transitions are studied. The nuclear gas-liquid and hadron-quark transitions in heavy-ion collisions are considered. We demonstrate that at non-zero thermal conductivity, Îș≠0\kappa \neq 0, onset of spinodal instabilities occurs on an isothermal spinodal line, whereas for Îș=0\kappa =0 instabilities take place at lower temperatures, on an adiabatic spinodal.Comment: invited talk at 6th International Workshop on Critical Point and Onset of Deconfinment (CPOD2010), Dubna, August 22-28, 201

    Discovery of a binary AGN in the ultraluminous infrared galaxy NGC 6240 using Chandra

    Full text link
    Ultraluminous infrared galaxies (ULIRGs) are outstanding due to their huge luminosity output in the infrared, which is predominantly powered by super starbursts and/or hidden active galactic nuclei (AGN). NGC 6240 is one of the nearest ULIRGs and is considered a key representative of its class. Here, we report the first high-resolution imaging spectroscopy of NGC 6240 in X-rays. The observation, performed with the ACIS-S detector aboard the Chandra X-ray observatory, led to the discovery of two hard nuclei, coincident with the optical-IR nuclei of NGC 6240. The AGN character of both nuclei is revealed by the detection of absorbed hard, luminous X-ray emission and two strong neutral Fe_K_alpha lines. In addition, extended X-ray emission components are present, changing their rich structure in dependence of energy. The close correlation of the extended emission with the optical Halpha emission of NGC 6240, in combination with the softness of its spectrum, clearly indicates its relation to starburst-driven superwind activity.Comment: ApJ Letters in press, 7 colour figures included; preprint and related papers on NGC 6240 also available at http://www.xray.mpe.mpg.de/~skomossa

    Properties of charge density waves in La2−x_{2-x}Bax_{x}CuO4_4

    Full text link
    We report a comprehensive x-ray scattering study of charge density wave (stripe) ordering in La2−xBaxCuO4(x≈1/8)\rm La_{2-x}Ba_xCuO_4 (x \approx 1/8), for which the superconducting TcT_c is greatly suppressed. Strong superlattice reflections corresponding to static ordering of charge stripes were observed in this sample. The structural modulation at the lowest temperature was deduced based on the intensity of over 70 unique superlattice positions surveyed. We found that the charge order in this sample is described with one-dimensional charge density waves, which have incommensurate wave-vectors (0.23, 0, 0.5) and (0, 0.23, 0.5) respectively on neighboring CuO2\rm CuO_2 planes. The structural modulation due to the charge density wave order is simply sinusoidal, and no higher harmonics were observed. Just below the structural transition temperature, short-range charge density wave correlation appears, which develops into a large scale charge ordering around 40 K, close to the spin density wave ordering temperature. However, this charge ordering fails to grow into a true long range order, and its correlation length saturates at ∌230A˚\sim 230\AA, and slightly decreases below about 15 K, which may be due to the onset of two-dimensional superconductivity.Comment: 11 pages, 9 figure

    Ground-state properties of the one-dimensional electron liquid

    Get PDF
    We present calculations of the energy, pair-correlation function (PCF), static structure factor (SSF), and momentum density (MD) for the one-dimensional electron gas using the quantum Monte Carlo method. We are able to resolve peaks in the SSF at even-integer multiples of the Fermi wave vector, which grow as the coupling is increased. Our MD results show an increase in the effective Fermi wave vector as the interaction strength is raised in the paramagnetic harmonic wire; this appears to be a result of the vanishing difference between the wave functions of the paramagnetic and ferromagnetic systems. We have extracted the Luttinger liquid exponent from our MDs by fitting to data around kF, finding good agreement between the exponent of the ferromagnetic infinitely thin wire and the ferromagnetic harmonic wire

    Impurity-induced stabilization of Luttinger liquid in quasi-one-dimensional conductors

    Full text link
    It is shown theoretically that the Luttinger liquid phase in quasi-one-dimensional conductors can exist in the presence of impurities in a form of a collection of bounded Luttinger liquids. The conclusion is based upon the observation by Kane and Fisher that a local impurity potential in Luttinger liquid acts, at low energies, as an infinite barrier. This leads to a discrete spectrum of collective charge and spin density fluctuations, so that interchain hopping can be considered as a small parameter at temperatures below the minimum excitation energy of the collective modes. The results are compared with recent experimental observation of a Luttinger-liquid-like behavior in thin NbSe3_3 and TaS3_3 wires.Comment: 11 pages, revtex, final version published in JETP Lett

    Origin of Radio Emission from Nearby Low-Luminosity Active Galactic Nuclei

    Full text link
    We use the observational data in radio, optical and X-ray wavebands, for a sample of active galactic nuclei (AGNs) with measured black hole masses, to explore the origin of radio emission from nearby low-luminosity active galactic nuclei (LLAGNs). We find that the radio luminosities are higher than the maximal luminosities expected from the ADAF model, for most sources in this sample. This implies that the radio emission is dominantly from the jets in these sources. The radio emission from a small fraction of the sources in this sample can be explained by the ADAF model. However, comparing the observed multi-band emission data with the spectra calculated for the ADAF or ADIOS cases, we find that neither ADAF nor ADIOS models can reproduce the observed multi-band emission simultaneously, with reasonable magnetic field strengths, for these radio-weak sources. A variety of other possibilities are discussed, and we suggest that the radio emission is probably dominated by jet emission even in these radio-weak LLAGNs.Comment: 25 pages, some references were added, accepted for publication in Ap

    Macroporous smart hydrogels for fast-responsive piezoresistive chemical microsensors

    Get PDF
    Within this work we present the synthesis and characterization of a pH-sensitive macroporous p(AAm-co-AA) hydrogel with an interconnected channel structure to enhance diffusion of aqueous solutions. The hydrogel is characterized by SEM and mercury porosimetry. Furthermore, the hydrogel is successfully integrated into piezoresistive microsensors measuring the hydrogel swelling due to pH changes. A response time reduction of about 80% compared to sensors with conventional non-porous hydrogels is accomplished
    • 

    corecore