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Ground-state properties of the one-dimensional electron liquid
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We present calculations of the energy, pair-correlation function (PCF), static structure factor (SSF), and
momentum density (MD) for the one-dimensional electron gas using the quantum Monte Carlo method. We are
able to resolve peaks in the SSF at even-integer multiples of the Fermi wave vector, which grow as the coupling
is increased. Our MD results show an increase in the effective Fermi wave vector as the interaction strength is
raised in the paramagnetic harmonic wire; this appears to be a result of the vanishing difference between the
wave functions of the paramagnetic and ferromagnetic systems. We have extracted the Luttinger liquid exponent
from our MDs by fitting to data around kF, finding good agreement between the exponent of the ferromagnetic
infinitely thin wire and the ferromagnetic harmonic wire.
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I. INTRODUCTION

Landau’s theory of Fermi liquids has proven tremendously
successful at describing a wide range of systems of interacting
fermions. In particular, the theory legitimizes the free electron
model by casting fermionic systems in terms of weakly inter-
acting quasiparticles. Systems of electrons in one dimension
provide an intriguing example of departure from the Landau
Fermi liquid paradigm, exhibiting non-Fermi-liquid behavior
for any finite strength of the electron-electron interaction.1

Perhaps the simplest model of electrons in one dimension is
the one-dimensional (1D) homogeneous electron gas (HEG),
which comprises electrons on a uniform positively charged
background.1

The strong correlation occurring in one dimension ensures
that the excitations are not electronlike quasiparticles, but
are instead collective in nature. An appropriate description
of the low-energy spectrum of the 1D HEG comes from
the theory of Tomonaga and Luttinger.2–4 There are several
experimental signatures of the Tomonaga-Luttinger (TL)
liquid which distinguish it from the normal Fermi liquid; these
are largely accessible to transport and tunneling experiments.
For example, the conductivity of a 1D channel as a function
of the temperature is expected to vary logarithmically in the
presence of weak disorder for the Fermi liquid, and as a
power law for the TL liquid.5,6 Analogous relations hold for
the differential conductivity and the optical conductivity. Also
associated with the lack of quasiparticles in the TL liquid is
spin-charge separation, whereby spin and charge excitations
propagate at different characteristic velocities.4,7,8

One-dimensional models are easy to envisage, but experi-
mental observation of 1D behavior is potentially problematic.
Low-dimensional systems are never entirely independent of
their 3D environment, leading to effects which have the po-
tential to obscure the 1D behavior. Furthermore, the presence
of impurities has been shown to alter drastically the behavior
of a TL liquid.1,9 However, even in manifestly 3D systems,
behavior unambiguously characteristic of electrons in one
dimension arises surprisingly frequently. Features associated
with the Luttinger model have been observed in organic con-

ductors (e.g., tetrathiafulvalene-tetracyanoquinodimethane
and the Bechgaard salts),10–14 transition metal oxides,15,16

carbon nanotubes,6,17–20 edge states in quantum Hall
liquids,21–23 semiconductor heterostructures,24–28 confined
atomic gases,29–31 and atomic nanowires.32 Theoretical work
on electrons in one dimension thus has a large region of
potential applicability.

The exactly solvable Luttinger model describes electrons
moving in one dimension with short-range interactions and
linear dispersion. Studies with long-range interactions have
found that the exponents and excitation velocities are non-
trivially altered.33 One thus expects to be able to describe the
1D HEG within the Luttinger model framework, but the exact
behavior of the parameters of the model is largely unclear.
The interactions that we study here are long range, possessing
a 1/|x| Coulombic tail. This is most applicable to systems
where screening is a small effect, such as isolated metallic
carbon nanotubes and semiconductor structures where there is
negligible coupling to the substrate.

The 1D HEG has been studied with a variety of theoreti-
cal and computational approaches. The principal distinction
between various studies is the choice of electron-electron
interaction. The bare Coulomb interaction, 1/|x|, which
describes an infinitely thin wire, is perhaps conceptually the
simplest choice, although it is largely avoided in the literature34

in its original form due to the divergence at x = 0. Instead,
many previous authors have removed the singularity while
retaining the long-range behavior by investigating interaction
potentials of the form V (x) ∝ (x2 + d2)−1/2, where d is a
parameter related to the width of the wire. This interaction has
been studied analytically33,35 and numerically.36

Alternatively, one can derive an effective 1D interaction by
factorizing the wave function into longitudinal and transverse
parts and assuming that the transverse component is the (2D)
single-particle ground state of the confining potential. The 1D
interaction is then the matrix element of the 3D Coulomb in-
teraction with respect to the transverse eigenfunctions.37,38 An
example of this is the harmonic wire, in which the transverse
confinement is provided by a parabolic potential, leading to a
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Gaussian density profile in the transverse plane. The harmonic
wire has been studied with quantum Monte Carlo (QMC),38–40

variants of the Singwi-Tosi-Land-Sjölander approach,41–44 and
the Fermi hypernetted-chain approximation.45

We have studied both the infinitely thin wire and the
harmonic wire using QMC. In this article we report QMC
calculations of the momentum density (MD), energy, pair-
correlation function (PCF), and static structure factor (SSF)
of the infinitely thin wire at a variety of densities and system
sizes. The MD results in particular show the non-Fermi-liquid
character of the system and allow us to recover one of the TL
parameters. The total energy data that we provide are exact
and may be regarded as a benchmark for future work. We also
present calculations of the MD for the harmonic wire, again
extracting one of the TL parameters.

The rest of this paper is structured as follows: The models
for which we perform our calculations are described in Sec. II.
In Sec. III we outline QMC methods and provide the details
of our approach. We report the ground-state energies of both
models in Sec. IV A and describe the PCFs in Sec. IV B. In
Sec. IV C we give the SSFs that we find for the infinitely
thin wire and in Sec. IV D we give the MDs for both models.
We describe the procedure for estimating a parameter of the
TL model in Sec. IV E. Finally, we draw our conclusions in
Sec. V. We use Hartree atomic units (h̄ = |e| = me = 4πε0 =
1) throughout this article.

II. MODELS

A. Hamiltonian

The Hamiltonians for both of the models we have studied
may be written as

Ĥ = −1

2

N∑
i=1

∂2

∂x2
i

+
∑
i<j

V (xij ) + N

2
VMad, (1)

where VMad is the Madelung energy (the interaction of a
particle with its own background and periodic images), xij =
|xi − xj | is the distance between electron i and electron j , and
V (xij ) is the Ewald interaction (the interaction of an electron
at xi with another electron at xj ), all of electron j ’s periodic
images, and 1/N of the uniform positive background. The
two models that we have studied differ in the V (xij ) and VMad

terms.

B. Infinitely thin wire

The Ewald interaction for the infinitely thin wire may be
written

V (xij )=
∞∑

n=−∞

(
1

|xij + nL| − 1

L

∫ L/2

−L/2

dy

|xij + nL − y|
)

, (2)

which is calculated in practice using an accurate approxima-
tion based on the Euler-Maclaurin summation formula (see
Eq. (4.8) of Ref. 46 for details).

The interaction of Eq. (2) diverges as 1/xij when xij → 0.
In higher dimensions, the divergence in the interaction energy
is canceled by an equal and opposite divergence in the kinetic
energy, so that nodes do not necessarily occur where two
antiparallel spins occupy the same position.47 In the infinitely

thin 1D system, the curvature of the wave function is unable
to compensate for the divergence in the interaction potential,
so the trial wave function has nodes at all of the coalescence
points for both parallel and antiparallel spin pairs. The result
is that the ground-state energy is independent of the spin
polarization and depends only on the density. In other words,
the Lieb-Mattis theorem48 does not apply and the paramagnetic
and ferromagnetic states are degenerate for the interaction of
Eq. (2). We have examined only the fully spin-polarized case
for the infinitely thin wire.

C. Harmonic wire

The second model we have studied describes electrons in a
2D confinement potential given by

V⊥(r⊥) = r2
⊥/8b4, (3)

where b is the width parameter and r is the magnitude of the
projection of the electron position onto the plane perpendicular
to the axis of the wire. The Ewald-like interaction for this
model may be written as38,49

V (xij ) =
∞∑

m=−∞

[√
π

2b
e(xij −mL)2/(4b2)erfc

( |xij − mL|
2b

)

− 1

|xij − mL|erf

( |xij − mL|
2b

)]

+ 2

L

∞∑
n=1

E1[(bGn)2] cos(Gnxij ), (4)

where G = 2π/L. Equation (4) possesses a long-range
Coulomb tail and is finite at xij = 0. A derivation of Eq. (4) is
given in Appendix A. For the harmonic wire we have probed
different polarizations, ζ = |N↑ − N↓|/N .

III. DETAILS OF CALCULATIONS

We computed expectation values using the variational and
diffusion Monte Carlo (VMC and DMC, respectively) methods
as implemented in the CASINO program.50 For the infinitely
thin wire, we combined VMC and DMC results to form
extrapolated estimates51 where applicable, whereas for the
harmonic wire we used VMC alone.

In the VMC method the expectation value of the Hamil-
tonian with respect to a trial wave function is calculated
using a stochastic integration technique.51 Trial wave functions
usually contain a number of free parameters; we optimized
the free parameters in our wave function by unreweighted
variance minimization52–54 and linear-least-squares energy
minimization.55 DMC is a stochastic projector technique for
solving the many-body Schrödinger equation and generates
configurations distributed according to the product of the
trial wave function and its ground-state component.51,56 DMC
calculations of expectation values of operators that commute
with the Hamiltonian are exact in principle for systems in
which the wave function nodes are known; this is the case for
both the infinitely thin and harmonic wires.

We used a Slater-Jastrow wave function for both systems,
where the Jastrow factor comprised two-body terms consisting
of smoothly truncated polynomials and a sum of cosines with
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FIG. 1. The DMC energy of the infinitely thin wire for several
different time steps and a linear fit to the data. The plot is for rs = 1
a.u. and N = 37 with 1000 configurations.

periodicity commensurate with that of the simulation cell.57

The orbitals in the Slater determinant were plane waves with
wave vectors up to kF = π/(4rs) for the paramagnetic systems
and kF = π/(2rs) for the ferromagnetic systems. The orbitals
were evaluated at quasiparticle coordinates related to the
actual coordinates by a backflow transformation.58 Backflow
provides an efficient way of describing three-body correlations
in the 1D HEG, but leaves the exact nodal surface unchanged.

One method for assessing the wave function quality is
to examine the fraction of the correlation energy retrieved,
(EHF − EVMC)/(EHF − EDMC), where EHF is the Hartree-
Fock energy, and EDMC and EVMC are the DMC and VMC
energies, respectively. We tested several types of wave func-
tions for the infinitely thin wire with rs = 15 a.u., N = 15,
and ζ = 1; our VMC calculations retrieved 99.9989(9)% of
the correlation energy when we used a two-body Jastrow
factor and backflow transformations [the error bars were
O(10−8) a.u.], which is the type of wave function we use
throughout this paper. While it is indeed the case that DMC is
formally exact for the 1D HEG, the quality of the trial wave
function is important for the statistical efficiency of the DMC
method and the accuracy with which expectation values of
operators that do not commute with the Hamiltonian may be
computed.

The DMC energy did not change beyond statistical error
upon varying the number of walkers between 640 and 2000,
so we used ∼1000 walkers in our calculations and assumed that
population control bias is negligible. The dependence of the
energy upon the DMC time step τ was also investigated; Fig. 1
shows that for small τ the energy is constant. We performed our
calculations at a single time step given by τ = 0.008 r2

s . This
fairly conservative choice was made to ensure that time-step
bias is entirely negligible. The RMS distance diffused by each
electron in a single step was thus slightly less than rs/10.

For the infinitely thin wire, we used simulation cells
containing 37, 55, 73, and 99 particles subject to periodic
boundary conditions for our calculations of the energy, PCF,
and SSF. Our MD calculations for the infinitely thin wire also
used a much larger cell with N = 255. For the harmonic wire,
we used cells with N = 123, 155, and occasionally 255 for the

TABLE I. Frequency with which electrons’ paths cross in our
VMC simulations of the harmonic wire. The quantity sexch is the
proportion of proposed single-electron moves that result in a change in
the ordering of the particles. A typical calculation comprises between
107 and 108 proposed single-electron moves. The data shown are for
N = 22.

rs (a.u.) b (a.u.) sexch

1 0.1 0.051(1)
1 4 0.160(2)
15 0.1 0.0016(2)
15 4 0.0020(3)

ζ = 1 systems and cells with N = 22 and 102 for the ζ = 0
systems.

Previous work encountered difficulties in sampling differ-
ent spin configurations of the harmonic wire for ζ 
= 1 due
to the presence of pseudonodes at the antiparallel coalescence
points,40 although these problems were largely overcome by
the use of lattice-regularized diffusion Monte Carlo (LRDMC)
in Ref. 38. The problem occurred because for strong, repulsive
interactions the wave function can become small when two
antiparallel spins approach one another. Combined with a
small time step, this can lead to simulations where opposite
spins exchange positions infrequently and the space of spin
configurations is explored very inefficiently. Use of a small
time step is a necessary part of the algorithm of projector
methods like DMC. We have avoided ergodicity problems by
using VMC to study the harmonic wire; in the VMC method
there is no restriction other than ergodicity on the transition
probability density and one may propose moves however one
wishes provided that the acceptance probability is modified
accordingly. We use electron-by-electron sampling with the
transition probability density given by a Gaussian centered
on the initial electron position. The VMC time step, in fact,
bears no relation to real time and is simply the variance of the
transition probability density. In practice, the unmodified time
steps (chosen to achieve a 50% acceptance ratio) used in VMC
are usually large enough to eliminate ergodicity problems,
although we found some cases where it was necessary to
enforce a lower limit on the width of the transition probability
density. Table I shows the frequency with which electrons
changed positions in our simulations for both high- and
low-density systems with strong and weak confinement.

IV. RESULTS

A. Energies

For the infinitely thin wire, we used DMC to calculate the
exact ground-state energy since there is no ergodicity problem.
Table II shows the DMC energies that we obtained for rs = 1,
2, 5, 10, 15, and 20 a.u., with N = 37, 55, 73, and 99 particles.
We find that the Fourier transform of the two-body Jastrow
factor u(k) takes the form u(k) ∝ 1/k as k → 0, allowing us to
estimate the leading-order scaling of the finite-size correction
to the kinetic energy.59 Furthermore, we observe that the
static structure factor S(k) goes to zero linearly at k = 0,
allowing calculation of the corresponding correction for the
potential energy.59 Motivated by these results, we use the form
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TABLE II. The DMC energies for the infinitely thin wire.

rs (a.u.) N EDMC (a.u./elec.)

1 37 0.153 651 3(3)
1 55 0.153 942 7(2)
1 73 0.154 049 7(3)
1 99 0.154 114 7(2)
2 37 −0.206 375 09(9)
2 55 −0.206 280 42(7)
2 73 −0.206 245 73(6)
2 99 −0.206 224 57(9)
5 37 −0.203 973 86(3)
5 55 −0.203 951 38(2)
5 73 −0.203 943 08(2)
5 99 −0.203 937 99(2)
10 37 −0.142 883 42(1)
10 55 −0.142 875 68(1)
10 73 −0.142 872 84(1)
10 99 −0.142 871 058(9)
15 37 −0.110 474 492(5)
15 55 −0.110 470 307(4)
15 73 −0.110 468 755(4)
15 99 −0.110 467 811(5)
20 37 −0.090 782 764(5)
20 55 −0.090 780 068(2)
20 73 −0.090 779 064(2)
20 99 −0.090 778 454(2)

E(N ) = E∞ + BN−2 to extrapolate to the thermodynamic
limit. Figure 2 demonstrates that this form fits the data well,
and Table III shows the extrapolated energies E∞.

The many-body Bloch theorem states that the wave function
ψT satisfies60

�T (x1, . . . ,xj + L, . . . ,xN ) = eiksL�T (x1, . . . ,xN ), (5)

where L is the length of the simulation cell and ks is the
simulation cell Bloch wave number. Averaging over ks in the
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FIG. 2. (Color online) Plot of the DMC energy against the
reciprocal of the square of the system size for the infinitely thin wire.
The energy has been offset by the extrapolate E∞ that one obtains
using the form E(N ) = E∞ + BN−2.

TABLE III. The DMC energies for the infinitely thin wire
extrapolated to the thermodynamic limit using the form E(N ) =
E∞ + BN−2.

rs (a.u.) E∞ (a.u./elec.)

1 0.154 188 6(2)
2 −0.206 200 84(7)
5 −0.203 932 35(2)
10 −0.142 869 097(9)
15 −0.110 466 761(4)
20 −0.090 777 768(2)

irreducible Brillouin zone (twist averaging) has been shown
to greatly reduce single-particle finite-size effects in two and
three dimensions.61–63 In one dimension, however, use of a
nonzero ks does not result in reoccupation of the orbitals,
but merely adds k2

s /2 to the energy per particle and leaves
unchanged (or trivially alters) other expectation values. It is
easy to show that the average of k2

s /2 over the Brillouin zone
falls off as O(N−2) in one dimension, hence, single-particle
finite-size effects simply lead to an additional O(N−2) error in
the energy per particle, which is removed when we extrapolate
to infinite system size.

The trial wave functions in our calculations for the harmonic
wire are of sufficient quality that the variational energies we
obtain are in statistical agreement with exact results in the
literature;38 Table IV shows the comparison.

B. Pair-correlation function

The PCF is accumulated in QMC simply by binning the
interparticle distances throughout the simulation. The parallel-
spin PCF is

g↑↑(x) = 1

ρ2
↑

〈
N↑∑
i>j

δ(|xi,↑ − xj,↑| − x)

〉
, (6)

where ρσ is the average density of electrons with spin σ , xi,σ

is the position of the ith electron with spin σ , and the angular
brackets denote an average over the configurations generated

TABLE IV. Comparison of our VMC energies for the harmonic
wire (b = 1 a.u., ζ = 1) with those of Ref. 38, calculated using
the LRDMC method. For both sets of results the energies were
extrapolated to the thermodynamic limit using the functional form
E(N ) = E∞ + BN−1 + CN−2, where E∞, B, and C are fitting
parameters.

rs (a.u.) EVMC (a.u./elec.) ELRDMC (a.u./elec.)

1 0.090 148 9(7) 0.090 14(1)
2 −0.163 120 7(8) −0.163 11(2)
10 −0.123 156 0(3) −0.123 157(3)
15 −0.097 119 4(1) −0.097 120(2)
20 −0.080 716 0(2) −0.080 717(1)
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FIG. 3. (Color online) The PCF of the infinitely thin wire at
several densities. The data shown are for N = 99 and are extrapolated
estimates [2gDMC(x) − gVMC(x)].

by the QMC algorithms. The antiparallel-spin PCF may be
written as

g↑↓(x) = 1

ρ↑ρ↓

〈
N↑∑
i

N↓∑
j

δ(|xi,↑ − xj,↓| − x)

〉
. (7)

The PCF for the harmonic wire was calculated for different
confinements and system sizes by Casula et al. using the
lattice-regularized DMC method.38 Figures 4 and 5 show
the agreement of the LRDMC results with the present work.
Figure 3 shows the PCF for the infinitely thin wire at several
values of rs .
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FIG. 4. (Color online) The PCF of the harmonic wire with rs =
1 a.u., N = 39, b = 1 a.u., and ζ = 1. The solid line shows our VMC
results and the symbols show the LRDMC results of Ref. 38. The
inset shows the same data at the origin.
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FIG. 5. (Color online) The PCF of the harmonic wire with rs = 1
a.u., N = 42, b = 1 a.u., and ζ = 0. The solid line shows our VMC
results and the symbols show the LRDMC results of Ref. 38. The
function plotted is [g↑↑(x) + g↑↓(x)]/2.

C. Static structure factor

The SSF of the 1D HEG is defined as1

S(k) = 1 + N

L

∫
[g(x) − 1]e−ikxdx, (8)

and SSFs that we present here are for the ferromagnetic
infinitely thin wire. As explained in the introduction, the
antiferromagnetic and ferromagnetic phases are degenerate for
the infinitely thin wire, so we do not violate the Lieb-Mattis
theorem with our choice of system.

The PCF can only be directly measured in QMC for
x < L/2 due to the finite extent of the simulation cell. This
manifests itself as a scaling of the SSF peak at 2kF with system
size, as demonstrated by the data in Fig. 6. The height of the
2kF peak in the finite-cell SSFs does not scale as N (and so

1.9 2 2.1 2.2 2.3 2.4
k / k

F

1
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1.4

1.6

1.8

S(
k)

0 1 2 3 4 5 6
0
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1
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2N = 99
N = 73
N = 55
N = 37

FIG. 6. (Color online) The SSF of the infinitely thin wire at
several system sizes. The data shown are extrapolated estimates
[2SDMC(k) − SVMC(k)] for rs = 2a.u.. The main plot shows the
behavior at the peak and the inset shows a zoomed-out view. The
PCF was not extended beyond L/2.
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FIG. 7. (Color online) Effect of extending the PCF before
performing the transformation of Eq. (8). The square symbols (labeled
“WS radius”) show the SSF obtained from the finite-cell PCF. The
solid, dash-dot, and dashed lines (which all lie on top of one another)
are from the N = 99, 73, and 55 PCFs, respectively, where, in each
case, the PCF has been extended out to many simulation cell lengths
using the fitting form of Eq. (9). The data shown are for rs = 20 a.u.

L) to any single power but appears to be sublinear, consistent
with the presence of quasi-long-range order. At k away from
the peak the SSFs appear to agree very well for different cell
sizes.

We further investigated finite-size effects by performing a fit
to the oscillatory tails of the PCF and using the fitted function
to extend the PCF far beyond L/2 before using Eq. (8) to
calculate the SSF. After testing a number of functional forms,
we found that a good quality and simple fit to the oscillatory
tails of the PCF takes the form33,38

g(x) − 1 = A cos(2kF x) exp(−B
√

ln x), (9)

where A and B are treated as fitting parameters. The choice of
Eq. (9) is motivated by the charge-charge correlation function
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FIG. 8. (Color online) The SSFs of the infinitely thin wire
obtained from Eq. (8) and the extended N = 99 PCFs.
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FIG. 9. (Color online) The SSF of the infinitely thin wire at very
low densities. The results shown are for N = 99. The finite-cell VMC
PCFs were used to generate the SSFs in the plot.

of Ref. 33. The parameters we obtained when fitting Eq. (9) to
our results are given in Table V in Appendix B.

We fitted Eq. (9) to the PCF data for 6rs < x < L/2 − 6rs ,
although we found that the results were not very sensitive to
the region of data included in the fit. The data close to the
origin were not included in the fit since Eq. (9) is only a good
fit for long-range correlations. The data at the edge of the cell
were excluded because that is the region midway between the
electron at the origin and its next periodic image, and might
be expected to be a region where the PCF suffers particularly
badly from finite-size effects.

We then formed the extended PCF by reinstating all of
the original PCF data up to L/2 − 6rs and appending a tail
for x > L/2 − 6rs using Eq. (9) and the fitted parameters.
Performing the Fourier transform of Eq. (8) numerically on
the extended PCF results in a SSF (for rs � 20 a.u.) with
a greatly enhanced peak at 2kF , but that agrees very well
with the finite-cell SSF everywhere else. Figure 7 shows the
difference between the SSFs obtained from the finite-cell and
the extended PCFs. Under the extension scheme, the peak at
2kF appears to be susceptible to noise; in particular, the density
of k points at which the SSF is calculated heavily affects the
apparent height. The fitting function of Eq. (9) possesses a peak
at 2kF in Fourier space, smoothly decays away elsewhere, and
is expected to be closer to the N = ∞ limit.

The asymptotically correct charge-charge correlation func-
tion of Schulz33 includes higher-order terms containing os-
cillations at wave numbers given by even multiples of kF .
For rs < 15 a.u. we find no discernible features at larger k.
However, a small feature at 4kF starts to develop at rs ≈
15 a.u., and for rs = 20 a.u. we observe a clear peak, visible
in Figs. 7, 8, and 9. We performed short VMC calculations
at extremely low densities, rs = 50 a.u. and 100 a.u., where
the electron-electron coupling is very large, to search for more
noticeable features at k > 2kF . We find that peaks in the SSF
do indeed appear at even multiples of kF for these systems,
as evidenced in Fig. 9. The SSF of the rs = 100 a.u. system
has clear peaks at k = 2kF , 4kF , and 6kF . This suggests that
one could add higher-order terms to the fit of Eq. (9) for the
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FIG. 10. (Color online) The MD of the infinitely thin wire at
several densities. The data shown are for N = 99 and are extrapolated
estimates [2nDMC(k) − nVMC(k)]. The statistical error bars are much
smaller than the symbols and some symbols have been omitted for
clarity.

low-density systems and perform the extension scheme again,
although this seems unlikely to produce any new behavior.

D. Momentum density

The MD is accumulated as

n(k) =
〈

1

2π

∫
�T(r)

�T(x1)
exp[ik(x1 − r)]dr

〉
, (10)

where �T(r) is the trial wave function evaluated at
(r,x2, . . . ,xn) and angular brackets denote an average over
configurations. The MD is the integral of the spectral function
from minus infinity up to the chemical potential.1 The MD
exhibits a drop at kF because the peak in the spectral function
reaches and passes through the chemical potential. If the
peak in the spectral function is a δ function at kF (i.e., the
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FIG. 11. (Color online) The VMC MD of the harmonic wire with
b = 0.1 a.u. and ζ = 0 at several densities. The data shown for each
density are for N = 22 and 102 (joined to form one data set). The
statistical error bars are smaller than the symbols.
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FIG. 12. (Color online) Comparison of the rs = 10 a.u. MD for
the infinitely thin wire (b = 0, ζ = 1) with that obtained for the
harmonic wire with b = 0.1 a.u. and ζ = 0. The statistical error bars
are similar in size to the symbols. The dashed lines show the values
of k at which Eq. (11) was fitted to the data for the calculations of the
exponent α.

spectral function possesses a quasiparticle peak) then the MD
is discontinuous at the Fermi edge. However, in one dimension
we expect the excitations to be collective rather than single
particlelike. The 1D systems should thus have MDs that are
continuous at kF , although TL liquid theory predicts that the
gradient will be singular.33

For the systems with ζ = 1, we have used kF = π/(2rs),
whereas for the systems with ζ = 0, we have used kF =
π/(4rs). Figure 10 shows the MDs that we obtain by eval-
uating the extrapolated estimator 2nDMC(k) − nVMC(k) for the
infinitely thin wire. The VMC and DMC results differed by no
more than ∼2 error bars, so that evaluating the extrapolated
estimator changed the results very little. Figure 11 shows the
MD for the harmonic wire with b = 0.1 a.u. and ζ = 0.

A particularly interesting feature of the paramagnetic
harmonic-wire MD is that, as rs is increased and b is
decreased, the function shifts much of its weight to larger
k, and n(0) reduces to values around 0.5. This is a direct
manifestation of the harmonic wire becoming more like the
ferromagnetic infinitely thin system. One can, in some cases,
see a feature resembling the gradient discontinuity appearing
at π/(2rs), (i.e., at twice the paramagnetic Fermi wave vector).
In particular, for rs = 10 a.u. and b = 0.1 a.u., the MD
possesses a feature at π/(2rs). Upon closer inspection we
find that the MD for the unpolarized system with b = 0.1
a.u. agrees very well with that of the infinitely thin wire
(b = 0 and ζ = 1). Figure 12 illustrates this comparison. It
thus appears possible to, in some sense, tune the effective
Fermi wave vector by adjusting the strength of the confinement
(and the density). A dense paramagnetic system with very
weak confinement shows significant occupation of momentum
states up to approximately π/(4rs). Increasing the effective
interaction strength increases this value of k until it eventually
saturates at the ferromagnetic kF . This reflects the fact that
in the limit rs → ∞ the pseudonodes at antiparallel-spin
coalescence points become true nodes.
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FIG. 13. (Color online) Exponent α [found from fitting Eq. (11)
to the MD] against the range of data included in the fit. The range
of data is described by |k − kF | < εkF . The symbols are the fitted
exponent values and the solid lines are linear fits to the exponents in
the region ε > 0.05. The data shown are for the infinitely thin wire.

E. Tomonaga-Luttinger liquid parameters

Close to the Fermi wave vector, TL liquid theory suggests
that the MD takes the form3,64

n(k) = n(kF ) + A[sign(k − kF )]|k − kF|α, (11)

which we have fitted to our results treating n(kF ), A, and α

as fitting parameters. Note that within TL liquid theory the
exponent α is related to the TL liquid parameter65 Kρ by

α = 1

4

(
Kρ + 1

Kρ

− 2

)
. (12)

If the range of data included in the fit is described by |k − kF | <

εkF , the choice of ε can present some difficulties. Ideally, one
would choose ε → 0 since Eq. (11) is potentially valid for
k → kF , and, indeed, using the entire range of MD results
yields rather poor fits. However, the estimate of α becomes
noisy when ε is small, and at the extreme where just two
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FIG. 14. (Color online) Exponent α found from fitting Eq. (11)
to the MD around k = π/(2rs) for the ζ = 1 systems and k = π/(4rs)
for the ζ = 0 systems.
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FIG. 15. (Color online) Exponent α found from fitting Eq. (11)
to the MDs of the ferromagnetic systems.

data points are included, one can of course obtain any value
for α. This leads us to include fits constructed using a larger
range of k values. In practice, we chose to perform a linear
extrapolation to ε = 0 excluding fits where ε < 0.05 for the
ζ = 1 systems, as shown in Fig. 13. For the ζ = 0 systems, the
extrapolation used α from fits for which ε � 0.25. The trend
that we observe in the exponent with respect to ε is similar to
that found in Ref. 66.

Figure 14 shows the exponents α that we obtain for several
densities, polarizations, and confinements. All of the systems
show the same general trend: α tends to 0 in the high-density
limit and to 1 in the low-density limit. As mentioned earlier, it is
important to note that for the ζ = 1 systems we fitted Eq. (11)
to the MD at π/(2rs), whereas for ζ = 0 we used π/(4rs).
The change in shape of the MD upon varying the interaction
strength that we noted in Sec. IV D and the apparent shift in kF

suggests that one could also extract a relevant exponent from
fitting to other values of k. For example, we showed in Fig. 12
the similarity between the rs = 10 a.u., b = 0.1 a.u., ζ = 0
MD and that of the rs = 10 a.u., b = 0, ζ = 1 system. Despite
the similarity of the MDs for the two systems, the fits used to
extract α from each were performed at different values of k—a
factor of two apart in fact. The result is that the exponent for
the paramagnetic wire is larger, since the Fermi edge for that
system has apparently shifted to k above the fitting region.

With this in mind, Fig. 15 shows the ζ = 1 results
alone, since for the ferromagnetic systems one can clearly
and reliably state that kF = π/(2rs) for the whole range
of densities. The exponent α for the infinitely thin wire is
reasonably well approximated by the function

α = tanh(rs/8), (13)

which gives a maximum deviation of 0.011(3) from the b = 0
QMC results, which occurs at rs = 15 a.u. The exponents for
the harmonic wire with b = 1 a.u. and ζ = 1 show a maximum
deviation from Eq. (13) of 0.057(6), which we find at rs = 5
a.u.

The exponent α has been reported in previous theoretical
and experimental studies. Reference 49 gives the exponents for
b = 0.1, 1, and 4 a.u. (with rs = 1 a.u. and ζ = 0) from VMC
calculations. In Fig. 16 we have shown how the results given
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FIG. 16. (Color online) Exponent α found from fitting Eq. (11)
to the MD of systems with rs = 1 a.u.

there compare with ours. It appears that the principal difference
between the two studies is the procedure for deciding upon a
fitting region. Ref. 49 does not give details of any extrapolation
to ε = 0 and presumably the whole range of n(k) was included
in the fit. Figure 16 also includes the exponent we find for the
infinitely thin wire (from VMC and DMC estimates of the
MD) at b = 0.

The exponent α has also been reported from experiments,
mostly through measurements accessing the single-particle
density of states near the Fermi edge. The exponent for carbon
nanotubes ranges between 0.2 and 0.4, although it is difficult
to map the behavior of electrons in these systems onto our
model since the electronic properties depend on the folding
geometry.6,17–20 For the Bechgaard salts, which have a 1D
carrier density of rs ≈ 6.9 a.u., exponents between 0.5625 and
0.8 have been reported.11,67–69

V. CONCLUSIONS

We have presented calculations of the ground-state energy,
PCF, SSF, and MD of the infinitely thin 1D HEG model using
VMC and DMC. We observe the development of peaks at
increasingly large even-integer multiples of kF in the SSF
as the density is lowered, consistent with the predictions of
Schulz.33

For the harmonic-wire model, we have reported ground-
state MDs and TL parameters for a range of densities
and confinements. We used VMC to produce these results;
comparison of our PCFs, SSFs, and ground-state energies with
LRDMC results38 where available indicates that our results are
extremely accurate.

The MDs of the ζ = 0 systems tend toward the MDs of
the infinitely thin wire and ferromagnetic harmonic wire as
b is decreased and as rs is increased, both of which have
the effect of increasing the electron-electron coupling. One
interpretation for this is that correlation is dominating over
kinetic confinement, so that antiparallel spin pairs are avoiding
one another almost as much as parallel spin pairs.

The TL parameters calculated for the b = 1 a.u., ζ = 1
system show reasonable agreement with the infinitely-thin-

wire results; the maximum deviation that we observe between
the parameters for the two systems is 0.051(6), which occurs
at rs = 5 a.u. The exponent α, which describes the behavior
of the MD at kF , takes values between 0 and 1. The exponent
for the ζ = 0 systems shows the same general trend, although
the value of α is typically higher than for the ζ = 1 systems.
This is largely a consequence of the shift of the weight in the
MD (including the singularity in the gradient) to larger k as
the coupling is increased.
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APPENDIX A: DERIVATION OF THE
QUASI-1D INTERACTION

One may derive Eq. (4) from first principles. Suppose that
we may write the wave function as a product θ (r⊥)ψ(x), where
x is the projection of the electron position onto the axis of the
wire and r⊥ is the transverse position.

If the electrons are sufficiently confined in the transverse
plane, one may obtain the 1D interaction v(x) by integrating
over the transverse part of the wave function,

v(x) =
∫ |θ (r⊥)|2|θ (r ′

⊥)|2
[x2 + |r⊥ − r ′

⊥|2]1/2
d r⊥d r ′

⊥. (A1)

For the harmonic wire, the confining potential is r2
⊥/8b4, where

b is a parameter. If rs  πb/4, one may make the assumption
that the electrons occupy only the lowest sub-band, which is
given by

θ (r⊥) = 1√
2πb2

exp

(
− r2

⊥
4b2

)
. (A2)

Substituting Eq. (A2) into Eq. (A1) yields41

v(x) =
√

π

2b
exp

(
x2

4b2

)
erfc

( |x|
2b

)
, (A3)

which is finite at x = 0 but retains a long-range 1/|x| tail. The
Fourier transform of Eq. (A3) is

ṽ(k) = E1(b2k2) exp(b2k2), (A4)

where E1 is the exponential integral function.
Having found the real- and reciprocal-space representations

of the 1D interaction in a harmonic wire, one must perform an
Ewald-like sum to enable calculations with periodic systems.
We follow a route similar to that of Ref. 49.
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The interaction of an electron at the origin with another
at position x, all of that electron’s periodic images, and its
background is given by

φ(x) =
∞∑

m=−∞

[
v(x − mL) − 1

L

∫ L/2

−L/2
dyv(x − mL − y)

]
,

(A5)

where L is the length of the simulation cell. The objective is to
write Eq. (A5) in terms of quickly converging discrete sums.
The first step is to write Eq. (A5) in the more useful form

φ(x) = γ0(x) − 1

L

∫ ∞

−∞
dyv(x − y), (A6)

where

γ0(x) =
∞∑

m=−∞
v(x − mL). (A7)

Equation (A7) is already in a form that is quick and easy to
evaluate, so we turn our attention to reformulating the integral
in the second term of Eq. (A6). We first perform the trick of
both adding and subtracting a Gaussian term p(y), giving

− 1

L

∫ ∞

−∞
dyv(x − y) = γ1(x) + γ2(x), (A8)

where

γ1(x) = −
∫ ∞

−∞
dyv(x − y)p(y), (A9)

γ2(x) =
∫ ∞

−∞
dyv(x − y)

[
p(y) − 1

L

]
, (A10)

and the term that we have added and subtracted is

p(y) =
∞∑

m=−∞

1

2b
√

π
exp

(
− 1

4b2
(y − mL)2

)
. (A11)

It is clear that φ(x) may now be written simply as

φ(x) = γ0(x) + γ1(x) + γ2(x). (A12)

We first inspect γ1(x), finding that it may be integrated directly
to give

γ1(x) =
∞∑

m=−∞

[
− 1

|x − mL|erf

( |x − mL|
2b

)]
, (A13)

which is a form suitable for numerical evaluation.
One may take the first step toward simplifying γ2(x) by

performing a Poisson summation on p(y),

p(y) = 1

L

[
1 + 2

∞∑
n=1

e−(bGn)2
cos(Gny)

]
, (A14)

where G = 2π/L. Putting Eq. (A14) into Eq. (A10) gives

γ2(x) = 2

L

∞∑
n=1

e−(bGn)2
∫ ∞

−∞
dyv(x − y) cos(Gny), (A15)

which may straightforwardly be rewritten in its final form,

γ2(x) = 2
√

2π

L

∞∑
n=1

ṽ(Gn) cos(Gnx)e−(bGn)2
, (A16)

TABLE V. Table showing the fitting parameters A and B from
Eq. (9) obtained from fitting to the extrapolated estimates of the PCF
for the infinitely thin wire. The fits were to PCF data in the range
6rs < x < L/2 − 6rs .

rs (a.u.) N A B (a.u.)

1 37 1.908 3.291
1 55 3.090 3.683
1 73 1.940 3.446
1 99 2.113 3.671
2 37 4.851 2.952
2 55 4.573 2.979
2 73 6.047 3.069
2 99 8.545 3.273
5 37 8.029 2.237
5 55 8.310 2.258
5 73 10.061 2.359
5 99 9.262 2.320
10 37 8.465 1.735
10 55 9.349 1.788
10 73 9.066 1.780
10 99 10.206 1.839
15 37 8.520 1.502
15 55 8.363 1.501
15 73 8.918 1.534
15 99 9.788 1.580
20 37 7.754 1.320
20 55 8.361 1.359
20 73 8.625 1.377
20 99 8.895 1.396

where we have used the result

∫ ∞

−∞
dyv(x − y) cos(Gny) =

√
2πṽ(Gn) cos(Gnx). (A17)

Finally, putting the expressions for the γ functions,
Eqs. (A7), (A13), and (A16), into Eq. (A12) and remembering
that ṽ(k) is given by Eq. (A4), we obtain the more computa-
tionally convenient form

φ(x) =
∞∑

m=−∞

[√
π

2b
e(x−mL)2/(4b2)erfc

( |x − mL|
2b

)

− 1

|x − mL|erf

( |x − mL|
2b

)]

+ 2

L

∞∑
n=1

E1[(bGn)2] cos(Gnx). (A18)

It should be noted that in Ref. 38, Rydberg rather than Hartree
units were used so that the potentials given there differ from
Eq. (A18) by a factor of 2.
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APPENDIX B: PAIR-CORRELATION FUNCTION
FITTING PARAMETERS

Table V shows the parameters that we obtained when
fitting Eq. (9) to the extrapolated estimates of the PCF for the

infinitely thin wire. We performed the fit for rs = 1, 2, 5, 10,
15, and 20 a.u. with systems containing N = 37, 55, 73, and
99 particles. The PCF data in the range 6rs < x < L/2 − 6rs

were included in the fit.
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