17 research outputs found

    Unlocking the secrets of mutable collagenous tissue

    Get PDF
    © Biochemical Society. The mutable collagenous tissue (MCT) of echinoderms (e.g. sea cucumbers, starfish and sea urchins) is unique because of its ability to 'switch' mechanical states rapidly and reversibly - from stiff to soft and vice versa. This kind of tissue in humans, for example, in skin, tendons and ligaments, does not have this property. So what are the molecular-level secrets by which MCT achieves this transformative ability? New real-time ultrastructural investigations are beginning to shed light on this question. Synchrotron X-ray measurements of dynamic molecular conformational changes point to the key factor being the gel-like matrix between the collagen fibrils. These findings could have applications for developing treatments for collagen-based disorders

    Functional Characterization of Cultured Keratinocytes after Acute Cutaneous Burn Injury

    Get PDF
    In addition to forming the epithelial barrier against the outside environment keratinocytes are immunologically active cells. In the treatment of severely burned skin, cryoconserved keratinocyte allografts gain in importance. It has been proposed that these allografts accelerate wound healing also due to the expression of a favourable--keratinocyte-derived--cytokine and growth factor milieu. In this study the morphology and cytokine expression profile of keratinocytes from skin after acute burn injury was compared to non-burned skin. Skin samples were obtained from patients after severe burn injury and healthy controls. Cells were cultured and secretion of selected inflammatory mediators was quantified using Bioplex Immunoassays. Immunohistochemistry was performed to analyse further functional and morphologic parameters. Histology revealed increased terminal differentiation of keratinocytes (CK10, CK11) in allografts from non-burned skin compared to a higher portion of proliferative cells (CK5, vimentin) in acute burn injury. Increased levels of IL-1α, IL-2, IL-4, IL-10, IFN-γ and TNFα could be detected in culture media of burn injury skin cultures. Both culture groups contained large amounts of IL-1RA. IL-6 and GM-CSF were increased during the first 15 days of culture of burned skin compared to control skin. Levels of VEGF, FGF-basic, TGF-ß und G-CSF were high in both but not significantly different. Cryoconservation led to a diminished mediator synthesis except for higher levels of intracellular IL-1α and IL-1ß. Skin allografts from non-burned skin show a different secretion pattern of keratinocyte-derived cytokines and inflammatory mediators compared to keratinocytes after burn injury. As these secreted molecules exert auto- and paracrine effects and subsequently contribute to healing and barrier restoration after acute burn injury therapies affecting this specific cytokine/growth factor micromilieu could be beneficial in burned patients

    New Insights into Mutable Collagenous Tissue: Correlations between the Microstructure and Mechanical State of a Sea-Urchin Ligament

    Get PDF
    The mutable collagenous tissue (MCT) of echinoderms has the ability to undergo rapid and reversible changes in passive mechanical properties that are initiated and modulated by the nervous system. Since the mechanism of MCT mutability is poorly understood, the aim of this work was to provide a detailed morphological analysis of a typical mutable collagenous structure in its different mechanical states. The model studied was the compass depressor ligament (CDL) of a sea urchin (Paracentrotus lividus), which was characterized in different functional states mimicking MCT mutability. Transmission electron microscopy, histochemistry, cryo-scanning electron microscopy, focused ion beam/scanning electron microscopy, and field emission gun-environmental scanning electron microscopy were used to visualize CDLs at the micro- and nano-scales. This investigation has revealed previously unreported differences in both extracellular and cellular constituents, expanding the current knowledge of the relationship between the organization of the CDL and its mechanical state. Scanning electron microscopies in particular provided a three-dimensional overview of CDL architecture at the micro- and nano-scales, and clarified the micro-organization of the ECM components that are involved in mutability. Further evidence that the juxtaligamental cells are the effectors of these changes in mechanical properties was provided by a correlation between their cytology and the tensile state of the CDLs

    Matrix metalloproteinases in a sea urchin ligament with adaptable mechanical properties

    Get PDF
    Mutable collagenous tissues (MCTs) of echinoderms show reversible changes in tensile properties (mutability) that are initiated and modulated by the nervous system via the activities of cells known as juxtaligamental cells. The molecular mechanism underpinning this mechanical adaptability has still to be elucidated. Adaptable connective tissues are also present in mammals, most notably in the uterine cervix, in which changes in stiffness result partly from changes in the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). There have been no attempts to assess the potential involvement of MMPs in the echinoderm mutability phenomenon, apart from studies dealing with a process whose relationship to the latter is uncertain. In this investigation we used the compass depressor ligaments (CDLs) of the sea-urchin Paracentrotus lividus. The effect of a synthetic MMP inhibitor - galardin - on the biomechanical properties of CDLs in different mechanical states ("standard", "compliant" and "stiff") was evaluated by dynamic mechanical analysis, and the presence of MMPs in normal and galardin-treated CDLs was determined semi-quantitatively by gelatin zymography. Galardin reversibly increased the stiffness and storage modulus of CDLs in all three states, although its effect was significantly lower in stiff than in standard or compliant CDLs. Gelatin zymography revealed a progressive increase in total gelatinolytic activity between the compliant, standard and stiff states, which was possibly due primarily to higher molecular weight components resulting from the inhibition and degradation of MMPs. Galardin caused no change in the gelatinolytic activity of stiff CDLs, a pronounced and statistically significant reduction in that of standard CDLs, and a pronounced, but not statistically significant, reduction in that of compliant CDLs. Our results provide evidence that MMPs may contribute to the variable tensility of the CDLs, in the light of which we provide an updated hypothesis for the regulatory mechanism controlling MCT mutability

    What stiffens sea cucumbers?

    No full text

    Stiffness-changing of polymer nanocomposites with cellulose nanocrystals and polymeric dispersant

    Get PDF
    Bio-inspired, water-responsive, mechanically adaptive nanocomposites are reported based on cellulose nanocrystals (CNCs), poly(ethylene oxide-co-epichlorohydrin) (EO-EPI), and a small amount of poly(vinyl alcohol) (PVA), which is added to aid the dispersion of the CNCs. In the dry state, the CNCs form a reinforcing network within the polymer matrix, and the substantial stiffness increase relative to the neat polymer is thought to be the result of hydrogen-bonding interactions between the nanocrystals. Exposure to water, however, causes a large stiffness reduction, due to competitive hydrogen bonding of water molecules and the CNCs. It is shown here that the addition of PVA to the EO-EPI/CNC nanocomposite increases the modulus difference between the dry and the wet state by a factor of up to four compared to the nanocomposites without the PVA. The main reason is that the PVA leads to a substantial increase of the stiffness in the dry state; for example, the storage modulus E ' increased from 2.7 MPa (neat EO-EPI) to 50 MPa upon introduction of 10% CNCs, and to 200 MPa when additionally 5% of PVA was added. By contrast, the incorporation of PVA only led to moderate increases of the equilibrium water swelling and the E ' in the wet state.Peer ReviewedPostprint (author's final draft

    Mutable Collagenous Tissue: Overview and Biotechnological Perspective

    No full text
    corecore