18,465 research outputs found

    Coexistence of different scaling laws for the entanglement entropy in a periodically driven system

    Get PDF
    The out-of-equilibrium dynamics of many body systems has recently received a burst of interest, also due to experimental implementations. The dynamics of both observables, such as magnetization and susceptibilities, and quantum information related quantities, such as concurrence and entanglement entropy, have been investigated under different protocols bringing the system out of equilibrium. In this paper we focus on the entanglement entropy dynamics under a sinusoidal drive of the transverse magnetic field in the 1D quantum Ising model. We find that the area and the volume law of the entanglement entropy coexist under periodic drive for an initial non-critical ground state. Furthermore, starting from a critical ground state, the entanglement entropy exhibits finite size scaling even under such a periodic drive. This critical-like behaviour of the out-of-equilibrium driven state can persist for arbitrarily long time, provided that the entanglement entropy is evaluated on increasingly subsystem sizes, whereas for smaller sizes a volume law holds. Finally, we give an interpretation of the simultaneous occurrence of critical and non-critical behaviour in terms of the propagation of Floquet quasi-particles.Comment: contribution to the 11th Italian Quantum Information Science conference (IQIS), September 17th-20th, 2018 - Catania, Italy, 4 page

    Composite quantum collision models

    Get PDF
    A collision model (CM) is a framework to describe open quantum dynamics. In its {\it memoryless} version, it models the reservoir R\mathcal R as consisting of a large collection of elementary ancillas: the dynamics of the open system S\mathcal{S} results from successive "collisions" of S\mathcal{S} with the ancillas of R\mathcal R. Here, we present a general formulation of memoryless {\it composite} CMs, where S\mathcal S is partitioned into the very open system under study SS coupled to one or more auxiliary systems {Si}\{S_i\}. Their composite dynamics occurs through internal SS-{Si}\{S_i\} collisions interspersed with external ones involving {Si}\{S_i\} and the reservoir R\mathcal R. We show that important known instances of quantum {\it non-Markovian} dynamics of SS -- such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise -- can be mapped on to such {\it memoryless} composite CMs.Comment: 12 pages, 4 figure

    Class of exact memory-kernel master equations

    Get PDF
    A well-known situation in which a non-Markovian dynamics of an open quantum system SS arises is when this is coherently coupled to an auxiliary system MM in contact with a Markovian bath. In such cases, while the joint dynamics of SS-MM is Markovian and obeys a standard (bipartite) Lindblad-type master equation (ME), this is in general not true for the reduced dynamics of SS. Furthermore, there are several instances (\eg the dissipative Jaynes-Cummings model) in which a {\it closed} ME for the SS's state {\it cannot} even be worked out. Here, we find a class of bipartite Lindblad-type MEs such that the reduced ME of SS can be derived exactly and in a closed form for any initial product state of SS-MM. We provide a detailed microscopic derivation of our result in terms of a mapping between two collision modelsComment: 9 pages, 1 figur

    Quantification of Order in the Lennard-Jones System

    Full text link
    We conduct a numerical investigation of structural order in the shifted-force Lennard-Jones system by calculating metrics of translational and bond-orientational order along various paths in the phase diagram covering equilibrium solid, liquid, and vapor states. A series of non-equilibrium configurations generated through isochoric quenches, isothermal compressions, and energy minimizations are also considered. Simulation results are analyzed using an ordering map representation [Torquato et al., Phys. Rev. Lett. 84, 2064 (2000); Truskett et al., Phys. Rev. E 62, 993 (2000)] that assigns to both equilibrium and non-equilibrium states coordinates in an order metric plane. Our results show that bond-orientational order and translational order are not independent for simple spherically symmetric systems at equilibrium. We also demonstrate quantitatively that the Lennard-Jones and hard sphere systems sample the same configuration space at supercritical densities. Finally, we relate the structural order found in fast-quenched and minimum-energy configurations (inherent structures).Comment: 35 pages, 8 figure

    Positive or negative voting premium: what happened to private benefits in Italy?

    Get PDF
    A large body of research deals with voting premium as a proxy of private benefit of control. Almost all of them find positive voting premium, in particular in Italy. Therefore appears interesting to ask what is the current status of private benefits of control in Italy in the last decade (2007-2017). Surprisingly, we show three major findings: i) reduction of non-voting share in the Italian scenario; ii) prevalence of negative voting rights premium more than positive ones, thus conflicting with the assumption and the observations by other researchers; iii) limits of the voting premium method. Our aim is that this study, despite its limitations, may encourage further researches focused on the analysis of the improvement and the change in the Italian corporate governance. The article points out that interesting evidence already exists, although still much remains to do in the future

    Quantum non-Markovian piecewise dynamics from collision models

    Get PDF
    Recently, a large class of quantum non-Markovian piecewise dynamics for an open quantum system obeying closed evolution equations has been introduced [B. Vacchini, Phys. Rev. Lett. 117, 230401 (2016)]. These dynamics have been defined in terms of a waiting-time distribution between quantum jumps, along with quantum maps describing the effect of jumps and the system's evolution between them. Here, we present a quantum collision model with memory, whose reduced dynamics in the continuous-time limit reproduces the above class of non-Markovian piecewise dynamics, thus providing an explicit microscopic realization.Comment: 18 pages, 1 figures. Submitted to "Open Systems and Information Dynamics" as a contribution to the upcoming special issue titled "40 years of the GKLS equation

    Black brane solutions and their solitonic extremal limit in Einstein-scalar gravity

    Full text link
    We investigate static, planar, solutions of Einstein-scalar gravity admitting an anti-de Sitter (AdS) vacuum. When the squared mass of the scalar field is positive and the scalar potential can be derived from a superpotential, minimum energy theorems indicate the existence of a scalar soliton. On the other hand, for these models, no-hair theorems forbid the existence of hairy black brane solutions with AdS asymptotics. By considering a specific example (an exact integrable model which has the form of a Toda molecule) and by deriving explicit exact solution, we show that these models allow for hairy black brane solutions with non-AdS domain wall asymptotics, whose extremal limit is a scalar soliton. The soliton smoothly interpolates between a non-AdS domain wall solution at r=r=\infty and an AdS solution near r=0r=0.Comment: 5 pages, no figure

    Quantum Critical Scaling under Periodic Driving

    Get PDF
    Universality is key to the theory of phase transition stating that the equilibrium properties of observables near a phase transition can be classified according to few critical exponents. These exponents rule an universal scaling behaviour that witnesses the irrelevance of the model's microscopic details at criticality. Here we discuss the persistence of such a scaling in a one-dimensional quantum Ising model under sinusoidal modulation in time of its transverse magnetic field. We show that scaling of various quantities (concurrence, entanglement entropy, magnetic and fidelity susceptibility) endures up to a stroboscopic time τbd\tau_{bd}, proportional to the size of the system. This behaviour is explained by noticing that the low-energy modes, responsible for the scaling properties, are resilient to the absorption of energy. Our results suggest that relevant features of the universality do hold also when the system is brought out-of-equilibrium by a periodic driving.Comment: 11 pages, 7 figure
    corecore