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A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it
models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open
system S results from successive collisions of S with the ancillas of R. Here, we present a general formulation
of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or
more auxiliary systems {Si}. Their composite dynamics occurs through internal S−{Si} collisions interspersed
with external ones involving {Si} and the reservoir R. We show that important known instances of quantum
non-Markovian dynamics of S—such as the emission of an atom into a reservoir featuring a Lorentzian, or
multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such
memoryless composite CMs.
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I. INTRODUCTION

A longstanding problem in the field of open quantum sys-
tem dynamics is the derivation of an effective description of the
reduced dynamics of a system S in contact with the surround-
ing environment, i.e., of a master equation having the reduced
density operator of S as the only unknown [1–3]. This is in
general a highly nontrivial task for quantum non-Markovian
dynamics. Note that even the very meaning non-Markovianity
and its correct measure are currently the focus of intense inves-
tigations [4]. Sometimes the approximations made to describe
non-Markovian dynamics can lead to master equations (MEs),
which do not preserve trace and complete positivity.

Quantum collision models, first introduced in Ref. [5] and
more recently studied in Refs. [6,7] have proved to be a
promising tool to analyze quantum non-Markovian dynamics
[8–13] as well as of quantum thermodynamical systems (see,
e.g., Refs. [14–16]). In its standard, memoryless, version, a
collision model describes the reservoir as a large collection
of elementary constituents or ancillas and the joint dynamics
as a sequence of pairwise system-ancilla unitary collisions.
The resulting reduced nonunitary dynamics of S, in the
continuous-time limit, can be shown [7] to be described by
a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master
equation [1–3]. A memoryless collision model thus entails
a fully Markovian evolution for the open system as long
as the ancillas are initially in a product state, they do not
mutually interact and the system collides only once with each
of the ancillas. To account for non-Markovian processes in
collision models, one has to somehow relax such assumptions,
e.g., by allowing the initial reservoir state to be correlated
[8,11] or enabling interancillary interactions between next
system-ancilla interactions [9,12].

Collision-model-based approaches are promising for the
study of non-Markovian dynamics for at least two reasons: (i)
they allow for the possibility to decompose a complicated
open dynamics in terms of discrete elementary processes
(each usually involving a pair of low-dimensional systems)
and (ii) they make possible the derivation of well-behaved

non-Markovian master equations [12,13]. Remarkably, (i) in
particular can suggest schemes to perform experimental
simulations of non-Markovian dynamics [17] or provide
valuable theoretical tools in the analysis of very large Hilbert
space problems [18] and time-delayed quantum feedback [19].
Concerning (ii), in particular, in 2013 two of us [12] showed
that one can use a collision model to work out a non-Markovian
master equation that is both capable to interpolate between
a Markovian and a strongly non-Markovian regime and,
additionally, is ensured to be completely positive and trace
preserving, namely two requirements that are in general hard
to meet at the same time. This master equation – recently
generalized and reinterpreted in [20] – prompted a number
of studies within a more general open-quantum-systems
framework [21,22].

An open issue in quantum collision models is their
descriptive power. While being an advantageous tool in many
respects, a collision model is itself rather abstract. One thus
naturally wonders whether (and how), given a non-Markovian
open dynamics, this can be reproduced through a suitably built
collision model. In the case of a qubit, Rybar et al. showed
that any nonunitary dynamics can be described through a
collision model provided that the initial reservoir state is
chosen accordingly. Typically, however, this requires the
preparation of a multipartite correlated state of all the reservoir
ancillas, which may be an experimentally demanding task.
Concerning collision models with initial uncorrelated reservoir
states, instead, very few instances of non-Markovian dynamics
were so far demonstrated to be reproducible through a collision
model.

A recurrent situation in which a non-Markovian dynamics
emerges (e.g., in quantum optics or condensed matter scenar-
ios) is when the interaction between a small quantum system
S and a large reservoir R is not direct but bridged by an
auxiliary quantum system S1 [23,24]. The prototypical tool for
describing such dynamics is a GKSL master equation for the
joint state of S and S1, where the Hamiltonian term of the Lind-
bladian superoperator features in particular a direct coherent
S-S1 coupling while the non-Hamiltonian one depends on a set
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of jump operators defined in the Hilbert space of S1 only. While
the resulting joint dynamics of S-S1 is evidently Markovian,
the one of S is in general non-Markovian. The question is
now raised whether a collision model effectively describing
the evolution of S in the continuous-time limit can be defined
for such an important class of non-Markovian dynamics.

One is thereby intuitively led to consider a memoryless
collision model (noninteracting and initially uncorrelated
ancillas) where however the system S undergoing repeated
collisions with the ancillas is now multipartite, being com-
posed by S (the very open system under study) and an auxiliary
system S1. Natural requirements would be to let S be uncou-
pled from the reservoir, but allow for a direct S−S1 coherent
interaction to occur between collisions. The main aim of the
present paper is to formulate in a rigorous way a theoretical
framework showing that it is indeed possible to define a
family of quantum collision models—which we call composite
collision models—that are precisely based on this intuitive idea
and reproduce the class of non-Markovian dynamics described
above. The discrete dynamics of such models can be thought as
consisting of internal collisions—enabling a crosstalk between
S and S1—interspersed with collisions between the auxiliary
system S1 only and the reservoir ancillas. The effectiveness
of this framework is illustrated in the case of some specific
instances of composite collision models, showing in particular
that, e.g., the known non-Markovian decay of an atom in a
lossy cavity or the dynamics of a qubit subject to random
telegraph noise can emerge through a collision-model-based
formulation. The collision models we introduce are naturally
extended, as we show, to the case of a manifold of auxiliary
systems {S1,S2, . . .}.

The use of a bipartite collision model to describe a
damped Jaynes-Cummings-model dynamics was introduced
in Ref. [14] and then investigated in more detail in Ref. [25].
Here, this result emerges as a specific instance of our com-
posite collision model framework. In particular, we present a
thorough discussion of the conditions to match in order for
such effective description to hold in the continuous-time limit.

On a rather general ground, any open system dynamics of a
system S arises as the partial trace over the environmental
degrees of freedom of the joint unitary dynamics entailed
by the system-reservoir total Hamiltonian model [1–3]. Such
environmental model has on the one hand a clear physical
meaning while, on the other hand, allows for a joint dynamics
where a large number of degrees of freedom are involved.
In contrast, a collision model dynamics takes place through
a succession of elementary interactions—each involving only
a small reservoir subunit—but its connection to a realistic
physical scenario is less straightforward. In the light of
this, given a microscopic environmental model, it would be
highly desirable to devise a general method to associate a
collision model yielding the same open system dynamics in
the continuous-time limit. Here, we take a first step towards
this challenging goal by showing that such mapping is possible
for some specific environmental models. This can be the case
for a qubit that is coupled in a purely dissipative or dispersive
fashion to a bosonic bath when the spectral density has a
Lorentzian or multi-Lorentzian shape, as we show.

The outline of this paper is the following. In Sec. II, we
review the standard quantum collision model leading to a

GKSL master equation in its continuous-time limit. In Sec. III,
we show how and under what conditions the collision model
of Sec. II can be extended to include an internal system
dynamics described by a corresponding free Hamiltonian. The
theoretical framework so formulated is then used in Sec. IV
as the basis to define a composite quantum collision model in
the bipartite case. In Sec. V, we illustrate a prominent instance
of such models, which in the continuous-time limit effectively
reproduces the open dynamics of an atom decaying in a lossy
cavity (damped Jaynes-Cummings model). In Sec. VI, we
study another instance of composite bipartite collision model
based on a dispersive S−S1 coupling, either with respect to
S1 or S. Correspondingly, the resulting collision model can
describe either a qubit subjected to random-telegraph noise or
a qubit undergoing a purely dephasing dynamics. In Sec. VII,
we show how to extend the composite bipartite collision model
of Sec. IV to the multipartite case. An instance, based on
a tripartite collision model, is then presented in Sec. VIII
and shown to be able to reproduce the dynamics of an atom
dissipatively coupled to a reservoir featuring a SD that is the
sum of two Lorentzian distributions. Finally, in Sec. IX we
draw our conclusions.

II. MEMORYLESS COLLISIONAL MODEL AND THE
MARKOVIAN MASTER EQUATION

In this section, we will briefly review how the standard
Markovian GKSL master equation (ME) is naturally derived
by a collisional memoryless model of open dynamics. In such
a model a quantum reservoir R consists of a large ensemble of
identical noninteracting ancillas {Rn} all in the same initial
state. The system S interacts with the environment via a
sequence of collisions, i.e., short interactions, with each of
the ancillas. The initial joint state of S−R is assumed to be
the product state

σ0 = ρ0 ⊗ (η ⊗ η ⊗ . . .), (1)

where ρ0 is the initial state of S while η is the common initial
state of all the ancillas. Both ρ0 and η can in general be mixed.
The state η can always be expressed in diagonal form in terms
of its eigenstates {|m〉} and associated probabilities {pm} as

η =
∑
m

pm |m〉〈m|, (2)

where {|m〉} form an orthonormal basis of the ancilla Hilbert
space. In the memoryless version of the model the reservoir
is assumed to be so large that the system never collides twice
with the same ancilla, therefore the open dynamics of S takes
place through pairwise short interactions between S and each
reservoir ancilla: S−R1, S−R2, S−R3, . . . , in such a way
that at each step S collides with a fresh ancilla that is still in
state η. A schematic sketch of the model dynamics is given in
Fig. 1(a).

It is assumed that all the collisions have the same duration
τ , each being described by the unitary evolution operator ÛSn

given by (we set h̄ = 1 throughout)

ÛSn = e−iĤSnτ , (3)
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FIG. 1. (a) Standard memoryless collision model: the system
S undergoes successive collisions with the reservoir ancillas {Rn},
each corresponding to an interaction Hamiltonian ĤSn. (b) Collision
model with internal dynamics: unlike (a), an intrasystem collision
(corresponding to a free system Hamiltonian ĤS ) takes place between
two next system-ancilla collisions. In either case of collision model,
only the first steps are sketched, the next ones being obtained by
simple iteration.

with

ĤSn = g ĥSn, (4)

where g is a coupling rate and ĥSn is a dimensionless Hermitian
interaction Hamiltonian acting on the joint S−Rn Hilbert
space.

Let ρn be the state of S at the (generic) nth step, i.e., just
after the collision with the nth ancilla:

ρn = TrR{ÛSnρn−1 η Û
†
Sn} ≡ TrRn

{ÛSnρn−1 η Û
†
Sn}. (5)

Continuous-time limit

As we assumed each collision to last for a short time τ , we
approximate ÛSn [cf. Eq. (3)]up to the second order in τ as

ÛSn � 1Sn − iĤSnτ − Ĥ 2
Sn

2
τ 2. (6)

When this is substituted into Eq. (5) the variation of ρn due to
a single collision, to second order in τ , is

�ρn = TrRn
{−i [ĥSn,ρnη]}gτ + TrRn

{
ĥSn(ρnη)ĥSn

− 1
2

[
ĥ2
Sn,ρnη

]
+
}
(gτ )2 (7)

with �ρn = ρn − ρn−1, [Ĉ,D̂] = ĈD̂ − D̂Ĉ and [Ĉ,D̂]+ =
ĈD̂ + D̂Ĉ. In line with standard procedures in open quantum
system theory [1–3], it is also assumed [13] that

TrRn
{ĥSnη} = 0. (8)

This assumption can be made with no loss of generality
since, when the average (8) is nonzero, it amounts just to
a renormalization of the S Hamiltonian and can thereby be
incorporated in the free-system Hamiltonian [13,26].

Let now tn = nτ (with n = 0,1, . . .) be the discrete time
variable up to the nth step. As one can equivalently regard the

collision model as the interaction of S with only one ancilla,
whose state is refreshed to η at times tn, the collision time
here plays the role of the usual environment self-correlation
time in standard microscopic derivations of the GKSL master
equation [1]. This time is, strictly speaking, finite. To pass
from the discrete dynamics to the continuous-time one we
must therefore realize that what we have in mind is a sort of
coarse graining over a finite time. From a formal viewpoint,
we carry out this by taking the limit n � 1 and τ � 0 in
such a way that tn → t with t being now a continuous-time
variable. Accordingly, �ρn/τ → dρ/dt . At the same time
we assume that the product γ = g2τ remains finite. Note
that in microscopic derivations γ is proportional to the self-
correlation time. In the continuous-time limit just described,
thereby, the finite-difference equation (7) takes the form of a
continuous-time master equation

dρ

dt
= L(ρ) (9)

with the superoperator L given by

L(ρ) = γ
∑
μν

(
ÂμνρÂ†

μν − 1

2
[Â†

μνÂμν,ρ]+

)
. (10)

Here, {Âμν} are jump operators in the S Hilbert space defined
by

Âμν = √
pν 〈μ|ĥSn|ν〉, (11)

where [cf. Eq. (2)] |μ〉 and |ν〉 are two orthonormal eigenstates
of η, i.e., elements of the basis {|m〉}, and pν the νth eigenvalue
of η [owing to the collision model translational invariance,
jump operators (11) and thus L are independent of ancilla Rn].

III. MEMORYLESS COLLISION MODEL WITH
INTERNAL DYNAMICS

The standard collision model of the previous section can be
modified to allow for an internal dynamics of S to take place
as well. Specifically, we assume that, between two consecutive
system-ancilla collisions, S undergoes a unitary dynamics
governed by a free Hamiltonian ĤS as shown in Fig. 1(b).
We will refer to this process as an intrasystem collision. A step
is now defined so to incorporate one intrasystem collision,
lasting a time τs followed by a system-ancilla one, lasting
a time τn. The system evolution after the nth step is again
described by Eq. (5), but ÛSn is now given by

ÛSn = e−iĤSnτn e−iĤSτs , (12)

where the S−Rn interaction Hamiltonian ĤSn is the same as
Eq. (4) while

ĤS = J ĥS (13)

is the free Hamiltonian of S with characteristic frequency
J and where ĥS is a dimensionless operator defined in the
S Hilbert space. In the following we want to reproduce
a coherent dynamics, generated by ĥS , together with an
incoherent dynamics, due to the system-ancilla collisions. To
be consistent with this assumption, while we coarse grain on
the incoherent dynamics, which means that τn will be assumed
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to be small but finite, we will assume τs 
 τn Consistently,
ÛSn in Eq. (12) is approximated as

ÛSn � 1Sn − i(ĤSτs + ĤSnτn) − Ĥ 2
Sn

2
τ 2
n . (14)

Equation (14) can be obtained by approximating in Eq. (12)
e−iĤSτ up to first in τs and e−iĤSnτ to second order in τn,
respectively, and then neglecting terms ∼τsτ

2
n as well as terms

τsτn. Note that, given the approximations made, in particular
neglecting terms ∼gJ , the two unitaries in Eq. (12) commute:
it is therefore irrelevant whether the system-ancilla collision
occurs before or after the intrasystem one. Thereby, one can
equivalently regard the two elementary collisions as if they
occurred simultaneously and assume [cf. Eq. (12)], ÛSn �
e−i(ĤS+ĤSn)τ . In particular, this makes legitimate to set (see a
few lines below) ρ̇ � �ρn/τ even if the time step consists of
two subsequent collisions duration τn and τs .

Proceeding now in analogy with the previous section, we
get the identity

�ρn = −i [ĤS ,ρn]τ + TrRn
{ĤSnρnηĤSn}τ 2

− 1
2 TrRn

{[
Ĥ 2

Sn,ρnη
]
+
}
τ 2. (15)

Correspondingly, in the continuous-time limit we end up the
master equation

dρ

dt
= −i [ĤS ,ρ] + L(ρ), (16)

where the superoperator L has the same form as in Eq. (10)
with the associated jump operators given by Eq. (11).

We point out that, as in the previous model, S undergoes a
Lindbladian (hence Markovian) dynamics and that the internal
dynamics of S only appears in the Hamiltonian term of the
right-hand side of Eq. (16). This is a consequence of the fact
that are treating the system-reservoir dynamics in a coarse-
grained fashion, while the system’s internal dynamics is taken
into account in full detail.

Note that the collision model with no internal dynamics
of Sec. II is effective even in the presence of a system free
Hamiltonian provided that [ĤS ,ĤSn] = 0. In such a case, it
indeed corresponds to the interaction picture. If [ĤS ,ĤSn] �=
0, though, this is no longer true since the system-ancilla
interaction Hamiltonian in Sec. II is assumed to be time
independent. To avoid time dependencies regardless of such
commutation relationship, the S internal dynamics thus must
be explicitly involved in the collisional dynamics, as shown
above.

IV. COMPOSITE COLLISION MODEL

We are now ready to discuss in detail the composite
quantum collision model that is central to our study. This is in
fact a specific instance of the collision model with internal
dynamics analyzed in the previous section, where S is a
bipartite system (in Sec. VII we will discuss the extension
to the multipartite case). Specifically, S comprises subsystems
S and S1 (see Fig. 2) with S embodying the very open system
under study, while S1 plays the role of an auxiliary system
(note that in the collision model with internal dynamics of the
previous section S ≡ S). By definition, the free Hamiltonian

of S reads

ĤS = ĤS1 + V̂SS1 , (17)

where ĤS1 is the free Hamiltonian of S1 (the one of S is
assumed to be zero) and V̂SS1 is the interaction Hamiltonian of
S and S1. As for the S−Rn interaction [cf. Eq. (4)], this takes
the form

ĤSn = ŴS1n = g ŵS1n (18)

with ŵS1n a dimensionless operator acting on the Hilbert space
of subsystem S1 and ancilla Rn (g is the associated coupling
strength). System S is thus not subject to any direct interaction
with Rn. A sketch of the collision model dynamics is given in
Fig. 2.

The master equation in the continuous-time limit thus reads

dρ

dt
= −i [ĤS ,ρ] + LS1 (ρ) (19)

with LS1 (ρ) having a form analogous to Eq. (10) with

Â(1)
μν = √

pν Rn
〈μ|ŵS1R1 |ν〉Rn

, (20)

γ = g2τ . (21)

The jump operators {Â(1)
μν} act in the Hilbert space of S1. In

the next two sections, we discuss two important instances of
bipartite composite collision model and we show how they are
related with known relevant classes of open quantum system
dynamics.

V. ATOM IN A LOSSY CAVITY

Based on the definitions in Sec. IV, consider now the case
where S and S1 are, respectively, a qubit and a bosonic mode.
Let {σ̂±, σ̂z} be the usual Pauli spin operators associated with
S, while α̂ (α̂†) is the annihilation (creation) bosonic operator
for the auxiliary system S1. The nth reservoir ancilla Rn is
modeled as as a bosonic mode with associated annihilation
(creation) operator ân (â†

n). By definition, [cf. Eqs. (17) and
(18)]

ĤS1 = �α̂†α̂, V̂SS1 = G(σ̂−α̂† + H.c.), (22)

ŴS1n = g (α̂â†
n + H.c.), (23)

hence both the S−S1 and S1−Rn interaction take place under
the rotating wave approximation (RWA).

FIG. 2. (a) System-ancilla collision and (b) intrasystem collision
in a composite bipartite collision model. SystemS comprises the very
open system S under study and an auxiliary system S1. In (a), note
that only S1 is involved in the collision with a reservoir ancilla. In (b),
Hamiltonian ĤS in particular accounts for a direct S−S1 interaction.
Apart from these specifications, the general discrete dynamics takes
place analogously to Fig. 1(b).
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To illustrate the dynamics of the collision model defined this
way, we consider the zero-temperature dynamics occurring
when S is initially in its excited state, while both S1 and the
ancillas are in their vacuum states (hence, in particular, η =
|0〉〈0|). The total number of excitations of S−R is conserved
at each collision, as follows from the form of Eqs. (22) and
(23). Given the considered initial state, the process thus takes
place within the single-excitation sector of the Hilbert space.
Based on this, we use a compact notation according to which
the overall initial state is denoted by |100〉, where the first
two quantum numbers refer to S and S1, respectively, while 0
refers to the reservoir ancillas (indicating that they are all in
the vacuum states). With the same notation, |010〉 is the state
with the single excitation localized in S1 while |001i〉 is the
state with the single excitation localized on the ith reservoir
ancilla Si . At any step n, the joint state thus reads

|
(n)〉 = ε(n)|100〉 + β(n)|010〉 +
n∑

i=1

λ
(n)
i |001i〉. (24)

Here, the superscript “n” labels the nth time step, while the
subscript “i” on λ labels the ith ancilla. Note that the last sum
in the equation above runs up to i = n since at the end of the
nth step ancillas labeled by index i � n + 1 are still unexcited.

State |
(n)〉 is connected with |
(n−1)〉 as |
(n)〉 =
e−iŴS1nτ e−i(ĤS1 +V̂SS1 )τ |
(n−1)〉 [cf. Eqs. (12), (22), and (23)]. In
Appendix A, we show that this allows to express coefficients
{εn,βn} as linear functions of {εn−1,βn−1} through the 2 × 2
transformation matrix M given by

M = e−i �
2 τ

(
z −i G

�
sin(�τ )

−i G
�

sin(�τ ) cos(gτ ) z∗ cos(gτ )

)
, (25)

where

� = 1

2

√
�2 + 4G2, z = cos(�τ ) + i

�

2�
sin(�τ ). (26)

Upon iteration, (
ε(n)

β(n)

)
= Mn

(
ε(0)

β(0)

)
, (27)

where in our case ε(0) = 1 while β(0) = 0. Eq. (27) in particular
allows to compute step by step the evolution of the excitation
amplitude of S up to any desired time nτ .

In Fig. 3, we use Eq. (27) to illustrate how the discrete-step
evolution of the S excited-state population depends on the
collision time τ in the paradigmatic case of zero detuning
(� = 0) and g = √

G/τ (we use G as the frequency unit and
let g be τ dependent in a way that g2τ is fixed to G). If τ

is not short enough, a continuous-time approximation of the
dynamics fails (see cases τ = 2G−1 and τ = G−1 in Fig. 3).
Collision times of the order of τ ∼ 0.1G−1 or shorter are
already enough to determine a smooth evolution as a function
of the step number n. For the considered parameters, the S

dynamics in this limit exhibits damped oscillations. These
originate from the S−S1 coupling Hamiltonian term V̂SS1

[cf. Eqs. (22)], which in absence of reservoir would induce
a continuous excitation exchange between S and the auxiliary
system S1. The effect of the reservoir is to damp the amplitude
of such energy exchange. These features can be explained by
noting that for τ 
 G−1 the conditions required for master

equation (19) to hold (see Sec. IV) are matched. Using that
η = |0〉〈0|, the master equation takes the explicit form [cf.
Eqs. (22) and (23)]

ρ̇ = −i[�α̂†α̂ + G(σ̂−α̂† + H.c.),ρ]

+ γ
(
α̂ρα̂† − 1

2 [α̂†α̂,ρ]+
)

(28)

with γ = g2τ [in passing, note that condition (8) is fulfilled].
This is the well-known master equation (in the rotating frame)
occurring in the damped Jaynes-Cummings (JC) model [23]
describing the dynamics of a two-level atom of frequency ω0

coupled with rate G to a single-mode cavity of frequency ωc,
where � = ωc − ω0 is the detuning while γ represents the
cavity dissipation rate.

For ρ(0) = |e〉S〈e||0〉S1〈0|, the joint state of S and R at
time t must have the same form as Eq. (24) with ε(n) →
ε(t), β(n) → β(t) and λ

(n)
i → λi(t). This alongside master

equation (28) then entail that ε(t) obeys the integrodifferential
equation (see Appendix B)

ε̇ = −G2
∫ t

0
dt ′ e−i(�−i

γ

2 )(t−t ′)ε(t ′), (29)

the solution of which reading

ε(t) = e−i �
2 t e− γ

4 t

[
cos

(
δt

2

)
+ i

ω1

δ
sin

(
δt

2

)]
(30)

with

ω1 = � − i
γ

2
, δ =

√
4G2 + ω2

1.

For � = 0 (zero detuning), δ =
√

G2 − γ 2/4. Hence, for γ �
2G and γ > 2G the excitation probability |ε(t)|2, respectively,
exhibits damped oscillations and a monotonic (in general
nonexponential) decay [1]. In Fig. 3, we compare the time
evolution of the excitation probability of S predicted by
Eq. (30) corresponding to master equation (28) with the
exact discrete dynamics of the collision model computed
through Eq. (27). The agreement between these is excellent
for collision times shorter than τ ∼ 10−1G−1.

A. Connection with a microscopic environmental model

Consider the microscopic environmental model defined by
the Hamiltonian

ĤAF = ω0 σ̂+σ̂− +
∑

k

ωk â
†
kâk +

∑
k

μk(σ̂−â
†
k + σ̂+âk), (31)

describing a two-level atom A of frequency ω0 in dissipative
contact (under RWA) with a bath of bosonic modes (field),
labeled by index k, with frequency ωk and bosonic annihilation
(creation) operator âk (â†

k) and atom-mode coupling rate μk .
In the continuous limit, ωk → ω, μk → μ(ω) and

∑
k →∫

dω ρ(ω) with ρ(ω) the field density of states.
Consider the spontaneous emission process with the atom

initially in its excited state and the bath modes initially in
their vacuum state. Let ε(t) be the probability amplitude to
find the atom in its excited state at time t . Given Hamiltonian
(31), it can be shown [1] that ε(t) is governed by the general
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integrodifferential equation

ε̇ = −
∫ t

0
ds

[∫
dωJ (ω)ei(ω0−ω)(t−s)

]
ε(s), (32)

where J (ω) = [μ(ω)]2ρ(ω) is the spectral density.
Now, for a Lorentzian spectral density given by

J (ω) = �0

2π

κ2

(ω − ω0 − �)2 + κ2
, (33)

it can be shown that the exact solution for ε(t) coincides with
Eq. (30) provided that

γ = 2κ, G =
√

�0κ

4
. (34)

As long as the open dynamics of the two-level system is
concerned, this in fact establishes an equivalence (first pointed
out by Garraway [27]) between the environmental model (31)
and the master equation (28) of the damped JC model. This is
intuitively clear once in Eq. (33) ω0 + � is interpreted as the
resonance frequency of a cavity mode and κ as the bandwidth
of a lossy cavity. Within our framework, given the previously
shown correspondence between master equation (28) and the
collision model in Eqs. (22) and (23), we can thus establish a
correspondence between such composite collision model (in
the continuous-time limit) and the microscopic environmental
model in Eq. (31). Starting from the latter, we can thereby
construct an associated composite (bipartite) collision model
defined by Eqs. (22), (23), and the parameters: �,

g =
√

2κ

τ
, G =

√
�0κ

4
, (35)

where we used γ = g2τ in combination with Eqs. (34).
To summarize, given the environmental microscopic model

in Eq. (31), in the case of a Lorenztian spectral density [cf.
Eq. (33)], one can construct a composite collision model
through Eqs. (22), (23), and (35) which, in the continuous-time
limit, reproduces the same open system dynamics.

VI. RANDOM TELEGRAPH NOISE
AND PURE DEPHASING

In the next instance of composite bipartite collision model
that we consider, S, S1 and Rn are all qubits. By definition [cf.
Eqs. (17) and (18)],

V̂SS1 = G K̂SK̂S1 , ŴS1n = g(σ̂1−σ̂n+ + σ̂1+σ̂n−) (36)

with K̂S (K̂S1 ) a Hermitian operator on S (S1). We take as
initial state of each ancilla, a thermal state η = 1

2 (1−ξ )|0〉〈0| +
1
2 (1 + ξ )|1〉〈1| with ξ = tanh(β) and β the R’s inverse
temperature.

In the continuous-time limit (see Sec. IV), the collision
model defined this way gives rise to the master equation for
the S−S1 state

ρ̇ = −i
[
G K̂SK̂S1 ,ρ

] + �+
(
σ̂1−ρ σ̂1+ − 1

2 [σ̂1+σ̂1−,ρ]+
)

+�−
(
σ̂1+ρ σ̂1− − 1

2 [σ̂1−σ̂1+,ρ]+
)
, (37)

where �± = γ (1 ± ξ )/2 with γ = g2τ . We will consider next
the collision models arising from two different choices of
operators K̂S and K̂S1 .

A. Random telegraph noise

In this first instance, we set K̂S = ĤS/G, K̂S1 = σ̂1z, and
ξ = 0 (hence the ancillary initial states are all maximally
mixed). Operator ĤS can be interpreted as a Hamiltonian
operator on S. Let |±〉S1

be the state of S1 such that ĤS |±〉S1
=

±|±〉S1
. Tracing over S1, the S reduced state is given by

ρS(t) = ρS+(t) + ρS−(t) with ρS±(t) =S1 〈±|ρ(t)|±〉S1 . In the
continuous-time limit, the master equation (37) gives rise to
the following pair of coupled master equations

ρ̇S± = −i[±ĤS,ρS±] ± 1

tc
(ρS− − ρS+), (38)

which describe the well-known dynamics of a quantum system
S subjected to random telegraph noise [28] in the case of
a single bistable fluctuator featuring a correlation time tc =
2/g2τ . In such a case, ±ĤS is the Hamiltonian corresponding
to the fluctuator’s classical state labeled by “±”, in turn
defining one of the two possible trajectories along which S

can evolve. The possibility to derive a random telegraph noise
qubit dynamics from a bipartite master equation of the form
Eq. (37) was pointed out in Ref. [29].

B. Pure dephasing

Let us now set K̂S = σ̂z and K̂S1 = σ̂1x with states |0〉 (|1〉)
being the S state such that σ̂z|0〉 = |0〉 (σ̂z|1〉 = −|1〉) and ρ0

the initial state of S. The populations 〈m|ρ0|m〉 for m = 0,1
will be clearly unaffected by the collision process due to the
dispersive nature of the S−S1 coupling while, as shown in
Appendix C, the coherences, at the nth step are

〈0|ρn|1〉 = 〈1|ρn|0〉∗ = fn〈0|ρ0|1〉,

FIG. 3. Excited-state population |ε(n)|2 of S against the step number n in the case of the composite collision model specified by Eqs. (22)
and (23) for different values of the collision time τ (in units of G−1) and for g = √

G/τ , � = 0. For each set value of τ , the solid curve shows
the behavior of the excitation probability [cf. Eq. (30)] predicted by master equation (28) for t = nτ and γ = g2τ . For τ = 10−1G−1 the solid
curve is in fact indistinguishable from the exact discrete dynamics.
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where the step-dependent dephasing factor fn reads

fn = 1

2

[(
(cg +1)cG + κ

2

)n

+
(

(cg + 1)cG − κ

2

)n]
+ (1− cg)cG

κ

× 1

2

[(
(cg + 1)cG + κ

2

)n

−
(

(cg+ 1)cG − κ

2

)n]
(39)

with

cg = cos(2gτ ), cG = cos(2Gτ ), κ = .

√
(cg−1)2c2

G−4cgs
2
G.

To carry out the continuous-time limit, in line with Sec. III,
we expand up to the second order in gτ and first order in
Gτ . This way, neglecting terms proportional to ∼G2g2 and
taking nτ → t and g2τ → γ , the continuous-time limit of
(1 − cg)cG/κ turns out to be g2τ/κc while (cg + 1)cG ± κ

becomes 2(1 − g2τ ± κcτ ), where

κc =
√

γ 2 − 4G2. (40)

With these approximations the step-dependent decoherence
factor (39) takes the continuous-time form

f (t) = e−γ t

[
cosh(κct) + γ sinh(κct)

κc

]
. (41)

This result can also be derived through a direct solution of
master equation (37).

Similarly to Sec. V A, also the present collision model can
be associated with a corresponding microscopic environmental
model yielding the same S open dynamics. To see this, consider
a qubit S dispersively coupled to a bosonic reservoir according
to the Hamiltonian

Ĥ = ω0σ̂+σ̂− +
∑

k

ωkâ
†
kâk +

∑
k

μkσ̂z(âk + â
†
k), (42)

where the difference with respect to Eq. (31) is that the
interaction is now dispersive. As in Sec. V A, the reservoir
spectral density in the continuous limit is given by J (ω) =
[μ(ω)]2ρ(ω).

This model can be solved exactly [1,30,31], the correspond-
ing master equation for the qubit (in the interaction picture)
reading

ρ̇S = γ (t)(σzρS σz − ρS). (43)

If the environment is initially in the vacuum state, the time-
dependent dephasing rate γ (t) takes the form

γ (t) =
∫ ∞

0
dω sin(ωt)

J (ω)

ω
. (44)

Accordingly, the coherences decay as 〈0|ρ(t)|1〉 =
e−�(t)〈0|ρ(0)|1〉) with �(t) related to γ (t) as �(t) =
2
∫ t

0 γ (t ′)dt ′. Equation (44) shows that J (ω)/ω is the Fourier-
Sine transform of γ (t). Correspondingly,

J (ω) = ω

∫ ∞

0
dt sin(ωt)γ (t). (45)

In the continuous-time limit of our collision model, we can
identify �(t) = − log[f (t)] and thereby γ (t) = 1/2�̇(t) =
−1/2ḟ (t)/f (t). Using next Eq. (45) with the help of Eq. (41),
we thus find that for γ>2G the equivalent spectral density of

our collision model is given by

J (ω) =
∞∑

j=0

(γ − κc)j

(γ + κc)j+2

4G2κc(j + 1)2

(j + 1)2 + ω2/
(
4κ2

c

) . (46)

We thus find that our collision model yields the same reduced
dynamics of S obtained from a microscopic environmental
model where the reservoir spectral density consists of a series
of Lorentzian-shaped distributions (with positive weights).
Note that all of these are centered at the same frequency with
a width that increases with index j . In the limit where the
coupling rate G is much smaller than the decay rate γ , only
the first term of the sum dominates in a way that the spectral
density reduces to a single Lorentzian.

VII. EXTENSION TO THE MULTIPARTITE CASE

So far we have considered composite collision models
where the system S comprises the very open system S and a
single auxiliary system S1. In this section, we present an
extension of the collision model to account for multiple
auxiliary systems. Furthermore, in this new scenario, we will in
addition allow each ancilla to be multipartite. Such extension
enables a collision model-based description of certain open
dynamics that cannot be captured in the simple bipartite case,
as we will show in the next section.

Both S and each reservoir ancilla are now assumed
to be multipartite. Specifically, S comprises N + 1
subsystems S, S1, S2, . . . ,SN with S embodying the very open
system under study and where {Si} are auxiliary systems.
Furthermore, the nth reservoir ancilla Rn is N -partite, its
subsystems, referred to as subancillas in the following,
being {Rn1,Rn2, . . . ,RnN }. The free Hamiltonian of S is now
defined by [cf. Eq. (17)]

ĤS =
N∑

i=1

(
ĤSi

+ V̂SSi

) +
∑
i<j

V̂SiSj
, (47)

where ĤSi
is the free Hamiltonian of subsystem Si , V̂SSi

is the interaction Hamiltonian of S and Si , while V̂SiSj

[not appearing in Eq. (17)] describes the Si−Sj coupling
between different auxiliary systems. The S−Rn interaction
[cf. Eq. (18)] is generalized as

ĤSn =
N∑

i=1

ŴSini
= giŵSini

(48)

with ŴSini
the interaction Hamiltonian of subsystem Si and

subancilla Rni
. Note that V̂ operators describe interactions

internal to the system S, while the Ŵ ’s correspond to
system-ancilla interactions. Also, note that the latter ones
take place only between subsystems and subancillas labeled
by corresponding indexes. The bipartite composite model of
Sec. IV is retrieved in the special case N = 1. A sketch of a
composite tripartite collision model, corresponding to N = 2,
is given in Fig. 4.

We assume the initial state of each ancilla to be the product
state η = ⊗N

i=1ξi , with ξi the initial state of each subancilla,
and that [cf. Eqs. (8) and (48)]

TrRni

{
ŴSini

ξi

} = 0. (49)
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This entails TrRn
{ĤSnη} = 0. Under the above conditions, an

identity analogous to Eq. (15) holds.
Once ĤSn is expressed through Eq. (48), we note that the

resulting cross terms in the Ŵ operators vanish because of
Eq. (49). In the continuous-time limit, we thus end up with a
master equation for ρ (state of S) that reads

dρ

dt
= −i [ĤS ,ρ] +

N∑
i=1

LSi
(ρ) (50)

with

LSi
(ρ) = γi

∑
μν

{
Â(i)

μν ρ
(
Â(i)

μν

)† − 1

2

[(
Â(i)

μν

)†
Â(i)

μν,ρ
]
+

}
,

Â(i)
μν = √

pν〈μ|ŵSini
|ν〉 (51)

γi = g2
i τ ,

where the initial subancilla state is ξi = ∑
m pm|m〉i〈m| (here

|μ〉 and |ν〉 are two generic elements of the orthonormal basis
{|m〉} in the Hilbert space of subancilla Rni

). The jump operator
Â(i)

μν and its H.c. act in the Hilbert space of the auxiliary system
Si with i = 1, . . . ,N . In the following section, we show how
the composite model defined above provides a collision-model
description of a quantum emitter subject to a multi-Lorentzian
spectral density.

VIII. MULTI-LORENTZIAN SPECTRAL DENSITY

Here, we address a composite collision model, which can
be regarded as an extension of the model described in Sec. V
to the case N = 2 (hence S is now tripartite). The model
features two auxiliary systems S1 and S2, each modeled as a
bosonic mode with associated annihilation (creation) operator
α̂
†
i (α̂i) for i = 1,2. Correspondingly, each reservoir ancilla Rn

is now bipartite, consisting of subancillas Rn1 and Rn2, each
modeled as a bosonic mode of annihilation (creation) operator
âni (â†

ni). The dynamics of this collision model is generated by

FIG. 4. (a) System-ancilla collision and (b) intrasystem collision
in a composite tripartite collision model. System S is tripartite
comprising the very open system S under study and the auxiliary
systems {S1, S2}, while ancilla Rn is bipartite comprising sub-
ancillas {Rn1, Rn2}. Note that a system-ancilla collision (a) occurs
through pairwise interactions between the auxiliary systems and the
corresponding reservoir subancillas.

the following Hamiltonian [cf. Eqs. (47) and (48)]

ĤSi
= �iα̂

†
i α̂i , V̂SSi

= Gi(σ̂−α̂
†
i + H.c.), (52)

V̂S1S2 = c (α̂1α̂
†
2 + H.c.), ŴSin = gi(α̂i â

†
ni + H.c.) (53)

with i = 1,2. Note that, in general, the auxiliary systems S1

and S2 can be subjected to a mutual interaction (with associated
coupling rate c).

We again restrict our analysis to the single-excitation
subspace, with S initially in its excited state, while S1, S2 and
all the ancillas are initially in their ground state (hence now
η = |0〉Rn1〈0| ⊗ |0〉Rn2〈0|). Introducing a compact notation
analogous to that employed in Sec. V, the single-excitation
initial state is thus denoted by |1000〉, the first three quantum
numbers now referring to S, S1 and S2, respectively. The total
number of excitations of S−R is again conserved. Similarly to
Eq. (24), the joint state at an arbitrary step n is now of the form

|
(n)〉 = ε(n)|1000〉 + β
(n)
1 |0100〉 + β

(n)
2 |0010〉

+
n∑

i=1

2∑
j=1

λ
(n)
ij |001ij 〉

with β
(n)
j (λ(n)

ij ) the excitation probability amplitude of Sj

(Rnj ) at the nth step.
By carrying out an analysis similar to the one carried on

in section V, one can show that in the continuous-time limit
the present collision model yields for S an open dynamics
equivalent to that of a microscopic environmental model of
the form (31) where the spectral density is a sum of two
Lorentzian functions.

In line with Ref. [27], we consider the two cases respectively
specified by [see Eqs. (52) and (53)] (i) c = 0 and (ii) G2 = 0,
�1,2 = �. In the case (i), we obtain that the equivalent spectral
density is the sum of two spectral densities with positive
weights

J (ω) =
∑
i=1,2

4G2
i /γi

2π

(γi/2)2

(ω − 2�i)2 + (γi/2)2

with γi = g2
i τ . Hence, the rate γi/2 and ratio 4G2

i /γi give
respectively the width and maximum of each distribution. In
the case (ii), instead, under the condition γ1 − γ2 > 2c, the
equivalent spectral density turns out to be

J (ω) =
(

κ+
2π

λ2
+

(ω − 2�)2 + λ2+

)
−

(
κ−
2π

λ2
−

(ω − 2�)2 + λ2−

)
,

where

λ± = (γ1 + γ2 ± χ )/4

κ± = 2G2{8c2(χ ∓ 2γ2) ± (γ1 − γ2)γ2[γ1 − (γ2 ± χ )]}
χ2(4c2 + γ1γ2)

with χ =
√

(γ1 − γ2)2 − 16c2. Such a combination of
Lorentzian distributions (with weights of opposite signs) can
be used as a simplified model of a reservoir featuring a
band-gapped spectrum [1,27].
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IX. CONCLUSIONS

In this paper, we have introduced a class of quantum
collision models, which we called composite collision models.
Their definition is inspired by multipartite Lindblad-type
master equations to describe non-Markovian dynamics, where
the open system under study is coherently coupled to one
or more auxiliary systems, which are in turn in contact with
Markovian baths.

In one such collision model, the very open system under
study S (undergoing non-Markovian dynamics in general)
is coupled to one or more auxiliary (in general mutually
interacting) systems {Si}, which in turn interact with the
reservoir ancillas. We have presented a comprehensive
discussion of the continuous-time limit in which the
collision model is effectively described by a master equation,
in particular the conditions on the collision time and
Hamiltonian parameters to fulfill.

We have shown that this collision-model-based frame-
work can accommodate some known relevant instances of
non-Markovian dynamics, such as an atom decaying in a
lossy cavity, a qubit subjected to random telegraph or purely
dephasing noise and a quantum emitter in dissipative contact
with a reservoir featuring a spectral density that is the sum of
two Lorentzian distributions.

It was also illustrated that some specific microscopic envi-
ronmental models can interestingly be associated with suitably
built corresponding composite collision models yielding the
same open system dynamics in the continuous-time limit. The
theory presented here strengthens the role that collision models
can play as an alternative, advantageous approach for tackling
quantum non-Markovian dynamics.

An open question left is whether collision models can
be constructed to describe certain classes of non-Markovian
dynamics that cannot be captured by the framework developed
here, such as the decay of an atom in a photonic-band-gap

medium where the corresponding reservoir spectral density
exhibits van Hove singularities, or, if not, whether such
impossibility can be given an insightful physical meaning [32].
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APPENDIX A

To derive Eq. (27), which in particular yields the open
dynamics of S in the collision model of Sec. V, we first
define the unitaries ÛS1n = e−iŴS1nτ and ÛS = e−i(ĤS1 +V̂SS1 )τ .
Next, we use that ÛS1n acts on the nth ancilla and subsystem
S1 only, while ÛS acts only on S and S1. Also, either of
these unitary operators does not change the total number of
excitations. Thereby, in the single-excitation sector of the
total Hilbert space, the only three states to be affected by
the application of ÛS1nÛS are {|100〉, |010〉, |00 1n〉}, all the
remaining ones being invariant. Thus, in virtue of Eq. (24) for
n → n − 1,

|
(n)〉 = ÛS1Rn
ÛS

[
ε(n−1)|100〉 + β(n−1)|010〉

+
n−1∑
i=1

γ
(n−1)
i |001i〉

]
. (A1)

Based on Eqs. (22) and (23), the effective matrix representation
of ÛS1nÛS in the subspace {|100〉, |010〉, |00 1n〉} can be
calculated as

US1nUS =

⎛
⎜⎜⎝

e−i �
2 τ

[
cos(�τ ) + i �

2�
sin(�τ )

]
G
2�

e−i( �
2 +�)τ (1 − e2i�τ ) 0

G
4�

(1 + e2igτ )(1 − e2i�τ )e−i(�+ �
2 +g)τ

e−i �
2 τ cos(gτ )

[
cos(�τ ) − i �

2�
sin(�τ )

] −i sin(gτ )

G
4�

(1 − e2igτ )(1 − e2i�τ )e−i(�+ �
2 +g)τ −ie−i �

2 τ sin(gτ )
[

cos(�τ ) − i �
2�

sin(�τ )
]

cos(gτ )

⎞
⎟⎟⎠,

where � = √
�2 + 4G2/2 [see Eqs. (26)]. This alongside Eq. (24) thus yield

ε(n) = e−i �
2 τ

[
cos(�τ ) + i

�

2�
sin(�τ )

]
ε(n−1) + G

2�
e−i( �

2 +�)τ (1 − e2i�τ )β(n−1), (A2)

β(n) = G

4�
(1 + e2igτ )(1 − e2i�τ )e−i(�+ �

2 +g)τ ε(n−1) + e−i �
2 τ cos(gτ )

[
cos(�τ ) − i

�

2�
sin(�τ )

]
β(n−1), (A3)

λ(n)
n = G

4�
(1 − e2igτ )(1 − e2i�τ )e−i(�+ �

2 +g)τ ε(n−1) − ie−i �
2 τ sin(gτ )

[
cos(�τ ) − i

�

2�
sin(�τ )

]
β(n−1). (A4)

Equations (A2) and (A3) can be expressed in matrix form as(
ε(n)

β(n)

)
= M

(
ε(n−1)

β(n−1)

)
,

where the 2 × 2 matrix M [cf. Eq. (25)] is the upper-left 2 × 2
block of matrix US1Rn

US .

APPENDIX B: DERIVATION OF EQ. (30)

For η = |0〉〈0| and ρ(0) = |e〉S〈e||0〉S1〈0|, due to the
conservation of the total number of excitations [cf. Eqs. (22)
and (23)] the joint S−R state at time t has the form

|
(t)〉 = ε(t)|100〉 + β(t)|010〉 +
n∑

i=1

λi(t)|001i〉. (B1)
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Upon trace over R of |
(t)〉〈
(t)|, the S’s density matrix then
reads

ρ(t) = |ε(t)|2|10〉〈10| + |β(t)|2|01〉〈01| + (ε(t)[β(t)]∗|10〉〈01|
+ H.c.) + (1 − |ε(t)|2 − |β(t)|2)|00〉〈00|. (B2)

Plugging this into master equation (28) yields the following
set of equations:

d

dt
|ε|2 = iG(εβ∗ − ε∗β),

d

dt
|β|2 = −iG(εβ∗ − ε∗β) − γ |β|2, (B3)

d

dt
(εβ∗) = −γ

2
εβ∗ + i[G(|ε|2 − |β|2) + �εβ∗].

It is easily checked that these are equivalent to
the system of differential equations in the excitation
amplitudes

ε̇ = −iGβ, (B4)

β̇ = −i
(
� − i

γ

2

)
β − iGε. (B5)

Solving Eq. (B5) as a function of ε(t) under the initial condition
β(0) = 0 yields

β(t) = −i G

∫ t

0
dt ′ e−i(�−i

γ

2 )(t−t ′)ε(t ′), (B6)

which when replaced in Eq. (B4) gives rise to the inte-
grodifferential equation (29). The solution (30) of Eq. (29)
can be worked out by taking the Laplace transform of each
equation side so as to end up with an algebraic equation in the
Laplace transform of ε(t). Once the inverse Laplace transform
is computed, Eq. (30) is obtained.

APPENDIX C

At step n, the S−S1 joint state (i.e., the S’s one) reads

ρn = TrRn
{ÛSnρn−1 η Û

†
Sn} = F[ρn−1] = Fn[ρ0] (C1)

with ÛSn = exp(−iV̂SS1τ ) exp(−iŴS1Rn
τ ) [cf. Eq. (36) and

Sec. VI B], where we have defined the bipartite quantum map
F acting on S and S1.

Next, we take as local operator basis for S and S1 the set of
Hermitian operators

Ĝα0 = Iα/
√

2, Ĝα1 = σαx/
√

2, Ĝα2 = σαy/
√

2,

Ĝα3 = σαz/
√

2

with α = S,S1. Accordingly, the bipartite operator basis for
the joint S−S1 system is given by Ĝkj = ĜSk⊗ĜS1j .

In this representation, map F corresponds to a 16 × 16 ma-
trix F, whose entries are given by F(kj,k′j ′) = Tr{ĜkjF[Ĝk′j ′ ]},
while the bipartite state ρn is turned into the 16-dimensional
column vector rn defined by rn,kj = Tr{Ĝkjρn}. Matrix F and
vector r0 are then computed as

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 cg 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 cGcg 0 0 0 0 0 0 0 0 0 0 0 0 −cgsG

−s2
g 0 0 cGc2

g 0 0 0 0 0 0 0 0 0 0 c2
gsG 0

0 0 0 0 cG 0 0 0 0 −sG 0 0 0 0 0 0
0 0 0 0 0 cGcg 0 0 −cgsG 0 0 0 0 0 0 0
0 0 0 0 0 0 cg 0 0 0 0 0 0 0 0 0
0 0 0 0 −cGs2

g 0 0 c2
g 0 sGs2

g 0 0 0 0 0 0
0 0 0 0 0 sG 0 0 cG 0 0 0 0 0 0 0
0 0 0 0 cgsG 0 0 0 0 cGcg 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 cg 0 0 0 0 0
0 0 0 0 0 −sGs2

g 0 0 −cGs2
g 0 0 c2

g 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 cg 0 0
0 0 0 −cgsG 0 0 0 0 0 0 0 0 0 0 cGcg 0
0 0 c2

gsG 0 0 0 0 0 0 0 0 0 −s2
g 0 0 cGc2

g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

r0 = 1
2

{
1,0,0,−1,ρ

(01)
0 + ρ

(10)
0 ,0,0,−(

ρ
(01)
0 + ρ

(10)
0

)
,i

(
ρ

(10)
0 − ρ

(01)
0

)
,0,0,−i

(
ρ

(10)
0 − ρ

(01)
0

)
,ρ

(11)
0 − ρ

(00)
0 ,0,0,ρ

(00)
0 − ρ

(11)
0

}
with sX = sin(2Xτ ) and cX = cos(2Xτ ) for X = g,G and ρ

(ij )
0 = 〈i|ρ|j 〉 for i,j = 0,1.

Evaluating next matrix Fn and applying it on r0, one
can calculate rn and eventually return to the density-matrix

description through ρn = ∑
kj rkj Ĝkj . This way, we end up

with Eq. (39) where fn = 1
2 [(Fn)(21,21)+(Fn)(31,31)].
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