339 research outputs found

    The calcar screw in angular stable plate fixation of proximal humeral fractures - a case study

    Full text link
    Background: With new minimally-invasive approaches for angular stable plate fixation of proximal humeral fractures, the need for the placement of oblique inferomedial screws ('calcar screw') has increasingly been discussed. The purpose of this study was to investigate the influence of calcar screws on secondary loss of reduction and on the occurrence of complications. Methods: Patients with a proximal humeral fracture who underwent angular stable plate fixation between 01/2007 and 07/2009 were included. On AP views of the shoulder, the difference in height between humeral head and the proximal end of the plate were determined postoperatively and at follow-up. Additionally, the occurrence of complications was documented. Patients with calcar screws were assigned to group C+, patients without to group C-. Results: Follow-up was possible in 60 patients (C+ 6.7 ± 5.6 M/C- 5.0 ± 2.8 M). Humeral head necrosis occurred in 6 (C+, 15.4%) and 3 (C-, 14.3%) cases. Cut-out of the proximal screws was observed in 3 (C+, 7.7%) and 1 (C-, 4.8%) cases. In each group, 1 patient showed delayed union. Implant failure or lesions of the axillary nerve were not observed. In 44 patients, true AP and Neer views were available to measure the head-plate distance. There was a significant loss of reduction in group C- (2.56 ± 2.65 mm) compared to C+ (0.77 ± 1.44 mm; p = 0.01). Conclusions: The placement of calcar screws in the angular stable plate fixation of proximal humeral fractures is associated with less secondary loss of reduction by providing inferomedial support. An increased risk for complications could not be shown

    Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels

    Get PDF
    Objectives: To evaluate optimal monoenergetic dual-energy computed tomography (DECT) settings for artefact reduction of posterior spinal fusion implants of various vendors and spine levels. Methods: Posterior spinal fusion implants of five vendors for cervical, thoracic and lumbar spine were examined ex vivo with single-energy (SE) CT (120 kVp) and DECT (140/100 kVp). Extrapolated monoenergetic DECT images at 64, 69, 88, 105keV and individually adjusted monoenergy for optimised image quality (OPTkeV) were generated. Two independent radiologists assessed quantitative and qualitative image parameters for each device and spine level. Results: Inter-reader agreements of quantitative and qualitative parameters were high (ICC = 0.81-1.00, κ = 0.54-0.77). HU values of spinal fusion implants were significantly different among vendors (P < 0.001), spine levels (P < 0.01) and among SECT, monoenergetic DECT of 64, 69, 88, 105keV and OPTkeV (P < 0.01). Image quality was significantly (P < 0.001) different between datasets and improved with higher monoenergies of DECT compared with SECT (V = 0.58, P < 0.001). Artefacts decreased significantly (V = 0.51, P < 0.001) at higher monoenergies. OPTkeV values ranged from 123-141keV. OPTkeV according to vendor and spine level are presented herein. Conclusions: Monoenergetic DECT provides significantly better image quality and less metallic artefacts from implants than SECT. Use of individual keV values for vendor and spine level is recommended. Key Points: • Artefacts pose problems for CT following posterior spinal fusion implants. • CT images are interpreted better with monoenergetic extrapolation using dual-energy (DE) CT. • DECT extrapolation improves image quality and reduces metallic artefacts over SECT. • There were considerable differences in monoenergy values among vendors and spine levels. • Use of individualised monoenergy values is indicated for different metallic hardware device

    Status Report on the Hydrodynamic Simulations of a Tapered Plasma Lens for Optical Matching at the ILC e+e^+ Source

    Full text link
    The International Linear Collider is a planned electron-positron linear collider with its positron source producing positrons by aiming undulator radiation onto a rotating target. The resulting, highly divergent positron beam requires immediate optical matching to improve the luminosity and therefore the success of the intended collision experiments. Here, optical matching refers to the process of capturing particles and making them available for downstream beamline elements like accelerators. In the past, this has been done with sophisticated coils, but more recently the usage of a current-carrying plasma, a so-called plasma lens, has been proposed as an alternative. For the International Linear Collider idealised particle tracking simulations have already been done with the purpose of finding the optimal plasma lens design with respect to the captured positron yield. The proposed design is characterised by a linearly widened radius in beam direction. Now further research and development of this design is required, including both experiments with a prototype set-up as well as corresponding simulations modelling the hydrodynamics of the current-carrying plasma and the resulting magnetic field. The accuracy of the latter will benefit greatly from the former. In this work, first preliminary hydrodynamic simulations instil confidence into further endeavours.Comment: Talk presented at the International Workshop on Future Linear Colliders (LCWS 2023), 15-19 May 2023. C23-05-15.

    Young adults with mild traumatic brain injury--the influence of alcohol consumption--a retrospective analysis

    Full text link
    PURPOSE: Alcohol abuse has been associated with aggressive behavior and interpersonal violence. Aim of the study was to investigate the role of alcohol consumption in a population of young adults with mild traumatic brain injuries and the attendant epidemiological circumstances of the trauma. SUBJECTS AND METHODS: All cases of mild traumatic brain injury among young adults under 30 with an injury severity score <16 who were treated as inpatients between 2009 and 2012 at our trauma center were analyzed with regard to the influence of alcohol consumption by multiple regression analysis. RESULTS: 793 patients, 560 men, and 233 women were included. The age median was 23 (range 14-30). Alcohol consumption was present in 302 cases. Most common trauma mechanism was interpersonal violence followed by simple falls on even ground. Alcohol consumption was present more often in men, unemployed men, patients who had interpersonal violence as a trauma mechanism, and in patients who were admitted to the hospital at weekends or during night time. It also increased the odds ratio to suffer concomitant injuries, open wounds, or fractures independently from the trauma mechanism. Length of hospital stay or incapacity to work did not increase with alcohol consumption. CONCLUSIONS: Among young adults men and unemployed men have a higher statistical probability to have consumed alcohol prior to suffering mild traumatic brain injury. The most common trauma mechanism in this age group is interpersonal violence and occurs more often in patients who have consumed alcohol. Alcohol consumption and interpersonal violence increase the odds ratio for concomitant injuries, open wounds, and fractures independently from another

    Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    Full text link
    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs

    Quantifying the improvement of surrogate indices of hepatic insulin resistance using complex measurement techniques

    Get PDF
    We evaluated the ability of simple and complex surrogate-indices to identify individuals from an overweight/obese cohort with hepatic insulin-resistance (HEP-IR). Five indices, one previously defined and four newly generated through step-wise linear regression, were created against a single-cohort sample of 77 extensively characterised participants with the metabolic syndrome (age 55.6±1.0 years, BMI 31.5±0.4 kg/m2; 30 males). HEP-IR was defined by measuring endogenous-glucose-production (EGP) with [6–62H2] glucose during fasting and euglycemic-hyperinsulinemic clamps and expressed as EGP*fasting plasma insulin. Complex measures were incorporated into the model, including various non-standard biomarkers and the measurement of body-fat distribution and liver-fat, to further improve the predictive capability of the index. Validation was performed against a data set of the same subjects after an isoenergetic dietary intervention (4 arms, diets varying in protein and fiber content versus control). All five indices produced comparable prediction of HEP-IR, explaining 39–56% of the variance, depending on regression variable combination. The validation of the regression equations showed little variation between the different proposed indices (r2 = 27–32%) on a matched dataset. New complex indices encompassing advanced measurement techniques offered an improved correlation (r = 0.75, P<0.001). However, when validated against the alternative dataset all indices performed comparably with the standard homeostasis model assessment for insulin resistance (HOMA-IR) (r = 0.54, P<0.001). Thus, simple estimates of HEP-IR performed comparable to more complex indices and could be an efficient and cost effective approach in large epidemiological investigations

    The FLASHForward Facility at DESY

    Get PDF
    The FLASHForward project at DESY is a pioneering plasma-wakefield acceleration experiment that aims to produce, in a few centimetres of ionised hydrogen, beams with energy of order GeV that are of quality sufficient to be used in a free-electron laser. The plasma wave will be driven by high-current density electron beams from the FLASH linear accelerator and will explore both external and internal witness-beam injection techniques. The plasma is created by ionising a gas in a gas cell with a multi-TW laser system, which can also be used to provide optical diagnostics of the plasma and electron beams due to the <30 fs synchronisation between the laser and the driving electron beam. The operation parameters of the experiment are discussed, as well as the scientific program.Comment: 19 pages, 9 figure
    • …
    corecore