13,452 research outputs found
Radiographic measurements of the trachea in domestic short haired and Persian cats
Tracheal diameter can be assessed from a thoracic radiograph, with assessment of tracheal diameter in dogs based on ratios between tracheal diameter and a skeletal measurement – however reference ranges are not available for the cat. Tracheal narrowing may cause significant clinical problems, although tracheal hypoplasia in dogs may be clinically silent, and is rarely reported in cats (both mesati- and brachycephalic). The tracheal diameter and trachea:thoracic inlet and trachea:rib ratios were calculated for populations of Domestic Short Haired (DSH) (n=68) and Persian (n=40) cats. This gave reference ranges for radiographic tracheal measurements in these breeds. It is proposed that the tracheal diameter in a normal DSH cat should be 18% of the diameter of the thoracic inlet, and compared to 20% in Persian cats
Effects of Enamel Paint on the Behavior and Survival of the Periodical Cicada, \u3ci\u3eMagicicada Septendecim\u3c/i\u3e (Homoptera) and the Lesser Migratory Grasshopper, \u3ci\u3eMelanoplus Sanguinipes (Orthoptera).
We present information compiled from several studies on the effects of methods for marking individual arthropods on their longevity and behavior. Results from our own research on effects of enamel paint marking on two in- sect species, the periodical cicada, Magicicada septendecim, and the lesser migratory grasshopper, Melanoplus sanguinipes, are also presented. Neither species showed any adverse survivorship or behavioral effects from marking
The maximum density droplet to lower density droplet transition in quantum dots
We show that, Landau level mixing in two-dimensional quantum dot wave
functions can be taken into account very effectively by multiplying the exact
lowest Landau level wave functions by a Jastrow factor which is optimized by
variance minimization. The comparison between exact diagonalization and fixed
phase diffusion Monte Carlo results suggests that the phase of the many-body
wave functions are not affected much by Landau level mixing. We apply these
wave functions to study the transition from the maximum density droplet state
(incipient integer quantum Hall state with angular momentum L=N(N-1)/2) to
lower density droplet states (L>N(N-1)/2).Comment: 8 pages, 5 figures, accepted for publication in Phys. Rev.
A high stability optical shadow sensor with applications for precision accelerometers
Displacement sensors are found in a variety of applications including gravitational wave detectors, precision metrology, tissue imaging, gravimeters, microscopy, and environmental monitoring. Most of these applications benefit from the use of displacement sensors that offer both high precision and stability. This is particularly the case for gravimetry where measurements are often taken over multi-day timescales. In this paper we describe a custom-built microcontroller-based displacement sensor that has been utilized in a micro-electromechanicalsystem gravimeter. The system runs off battery power and is low-cost, portable, and lightweight. Using an optical shadow sensor technique, and by designing a digital lock-in amplier based around a dsPIC33 microcontroller, we demonstrate a displacement sensitivity of 10 nm/Hz down to 300 s, and an rms sensitivity of 1 nm over timescales of one day. The system also provides real time monitoring/control of temperature, using an AD7195 ratiometric bridge to provide mK control of three separate PT100 sensors. Furthermore, a tilt sensor conditioning circuit is incorporated to drive a pair of electrolytic tilt sensors, resulting in the ability to monitor 2 axis tilt at the level of 1 microradian over approximately 1 day. The sensor system described is thus multifunctional and capable of being incorporated into precision accelerometers/gravimeters, or indeed other applications where long term displacement/temperature monitoring is necessary
Field tests of a portable MEMS gravimeter
Gravimeters are used to measure density anomalies under the ground. They are applied in
many different fields from volcanology to oil and gas exploration, but present commercial systems
are costly and massive. A new type of gravity sensor has been developed that utilises the same
fabrication methods as those used to make mobile phone accelerometers. In this study, we describe
the first results of a field-portable microelectromechanical system (MEMS) gravimeter. The stability
of the gravimeter is demonstrated through undertaking a multi-day measurement with a standard
deviation of 5.58 × 10−6 ms−2
. It is then demonstrated that a change in gravitational acceleration of
4.5 × 10−5 ms−2
can be measured as the device is moved between the top and the bottom of a 20.7 m
lift shaft with a signal-to-noise ratio (SNR) of 14.25. Finally, the device is demonstrated to be stable in
a more harsh environment: a 4.5 × 10−4 ms−2 gravity variation is measured between the top and
bottom of a 275-m hill with an SNR of 15.88. These initial field-tests are an important step towards
a chip-sized gravity senso
Few-body resonances of unequal-mass systems with infinite interspecies two-body s-wave scattering length
Two-component Fermi and Bose gases with infinitely large interspecies s-wave
scattering length exhibit a variety of intriguing properties. Among these
are the scale invariance of two-component Fermi gases with equal masses, and
the favorable scaling of Efimov features for two-component Bose gases and
Bose-Fermi mixtures with unequal masses. This paper builds on our earlier work
[D. Blume and K. M. Daily, arXiv:1006.5002] and presents a detailed discussion
of our studies of small unequal-mass two-component systems with infinite
in the regime where three-body Efimov physics is absent. We report on
non-universal few-body resonances. Just like with two-body systems on
resonance, few-body systems have a zero-energy bound state in free space and a
diverging generalized scattering length. Our calculations are performed within
a non-perturbative microscopic framework and investigate the energetics and
structural properties of small unequal-mass two-component systems as functions
of the mass ratio , and the numbers and of heavy and
light atoms. For purely attractive Gaussian two-body interactions, we find that
the and systems exhibit three-body and four-body
resonances at mass ratios and 10.4(2), respectively. The
three- and four-particle systems on resonance are found to be large. This
suggests that the corresponding wave function has relatively small overlap with
deeply-bound dimers, trimers or larger clusters and that the three- and
four-body systems on resonance have a comparatively long lifetime. Thus, it
seems feasible that the features discussed in this paper can be probed
experimentally with present-day technology.Comment: 17 pages, 17 figure
Promoting independent learning skills using video on digital language laboratories
This is the author's PDF version of an article published in Computer assisted language learning ©2006. The definitive version is available at http://www.informaworld.com/The article discusses the potential for developing independent learning skills using the digital language laboratory with particular reference to exploiting the increasingly available resource of digital video. It investigates the potential for recording and editing video clips from online sources and digitalising clips from analogue recordings and reflects on the current status quo regarding the complex copyright regulations in this area. It describes two pilot self-access programmes based on video clips which were undertaken with University College Chester undergraduates and reflects on the value of the experience for students in developing a wide range of language skills as well as independent learning skills using their feedback on the experience
Effects of a torsion field on Big Bang nucleosynthesis
In this paper it is investigated whether torsion, which arises naturally in
most theories of quantum gravity, has observable implications for the Big Bang
nucleosynthesis. Torsion can lead to spin flips amongst neutrinos thus turning
them into sterile neutrinos. In the early Universe they can alter the helium
abundance which is tightly constrained by observations. Here I calculate to
what extent torsion of the string theory type leads to a disagreement with the
Big Bang nucleosynthesis predictions.Comment: accepted by General Relativity and Gravitatio
Fermion Helicity Flip Induced by Torsion Field
We show that in theories of gravitation with torsion the helicity of fermion
particles is not conserved and we calculate the probability of spin flip, which
is related to the anti-symmetric part of affine connection. Some cosmological
consequences are discussed.Comment: 6 pages, to appear in Europhysics Letter
- …
