Gravimeters are used to measure density anomalies under the ground. They are applied in
many different fields from volcanology to oil and gas exploration, but present commercial systems
are costly and massive. A new type of gravity sensor has been developed that utilises the same
fabrication methods as those used to make mobile phone accelerometers. In this study, we describe
the first results of a field-portable microelectromechanical system (MEMS) gravimeter. The stability
of the gravimeter is demonstrated through undertaking a multi-day measurement with a standard
deviation of 5.58 × 10−6 ms−2
. It is then demonstrated that a change in gravitational acceleration of
4.5 × 10−5 ms−2
can be measured as the device is moved between the top and the bottom of a 20.7 m
lift shaft with a signal-to-noise ratio (SNR) of 14.25. Finally, the device is demonstrated to be stable in
a more harsh environment: a 4.5 × 10−4 ms−2 gravity variation is measured between the top and
bottom of a 275-m hill with an SNR of 15.88. These initial field-tests are an important step towards
a chip-sized gravity senso