461 research outputs found
Ab-initio coupled-cluster effective interactions for the shell model: Application to neutron-rich oxygen and carbon isotopes
We derive and compute effective valence-space shell-model interactions from
ab-initio coupled-cluster theory and apply them to open-shell and neutron-rich
oxygen and carbon isotopes. Our shell-model interactions are based on
nucleon-nucleon and three-nucleon forces from chiral effective-field theory. We
compute the energies of ground and low-lying states, and find good agreement
with experiment. In particular our calculations are consistent with the N=14,
16 shell closures in oxygen-22 and oxygen-24, while for carbon-20 the
corresponding N=14 closure is weaker. We find good agreement between our
coupled-cluster effective-interaction results with those obtained from standard
single-reference coupled-cluster calculations for up to eight valence neutrons
Ab initio calculations of reactions with light nuclei
An {\em ab initio} (i.e., from first principles) theoretical framework
capable of providing a unified description of the structure and low-energy
reaction properties of light nuclei is desirable to further our understanding
of the fundamental interactions among nucleons, and provide accurate
predictions of crucial reaction rates for nuclear astrophysics, fusion-energy
research, and other applications. In this contribution we review {\em ab
initio} calculations for nucleon and deuterium scattering on light nuclei
starting from chiral two- and three-body Hamiltonians, obtained within the
framework of the {\em ab initio} no-core shell model with continuum. This is a
unified approach to nuclear bound and scattering states, in which
square-integrable energy eigenstates of the -nucleon system are coupled to
target-plus-projectile wave functions in the spirit of the resonating
group method to obtain an efficient description of the many-body nuclear
dynamics both at short and medium distances and at long ranges.Comment: 9 pages, 5 figures, proceedings of the 21st International Conference
on Few-Body Problems in Physic
Structure of A=10-13 nuclei with two- plus three-nucleon interactions from chiral effective field theory
Properties of finite nuclei are evaluated with two-nucleon (NN) and
three-nucleon (NNN) interactions derived within chiral effective field theory
(EFT). The nuclear Hamiltonian is fixed by properties of the A=2 system, except
for two low-energy constants (LECs) that parameterize the short range NNN
interaction. We constrain those two LECs by a fit to the A=3 system binding
energy and investigate sensitivity of 4He, 6Li, 10,11B and 12,13C properties to
the variation of the constrained LECs. We identify a preferred choice that
gives globally the best description. We demonstrate that the NNN interaction
terms significantly improve the binding energies and spectra of mid-p-shell
nuclei not just with the preferred choice of the LECs but even within a wide
range of the constrained LECs. At the same time, we find that a very high
quality description of these nuclei requires further improvements to the chiral
Hamiltonian.Comment: 4 pages, 4 figure
Ab-initio shell model with a core
We construct effective 2- and 3-body Hamiltonians for the p-shell by
performing 12\hbar\Omega ab initio no-core shell model (NCSM) calculations for
A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the
0\hbar\Omega space. We then separate these effective Hamiltonians into 0-, 1-
and 2-body contributions (also 3-body for A=7) and analyze the systematic
behavior of these different parts as a function of the mass number A and size
of the NCSM basis space. The role of effective 3- and higher-body interactions
for A>6 is investigated and discussed
Discrepancy between experimental and theoretical -decay rates resolved from first principles
-decay, a process that changes a neutron into a proton (and vice
versa), is the dominant decay mode of atomic nuclei. This decay offers a unique
window to physics beyond the standard model, and is at the heart of
microphysical processes in stellar explosions and the synthesis of the elements
in the Universe. For 50 years, a central puzzle has been that observed
-decay rates are systematically smaller than theoretical predictions.
This was attributed to an apparent quenching of the fundamental coupling
constant 1.27 in the nucleus by a factor of about 0.75 compared
to the -decay of a free neutron. The origin of this quenching is
controversial and has so far eluded a first-principles theoretical
understanding. Here we address this puzzle and show that this quenching arises
to a large extent from the coupling of the weak force to two nucleons as well
as from strong correlations in the nucleus. We present state-of-the-art
computations of -decays from light to heavy nuclei. Our results are
consistent with experimental data, including the pioneering measurement for
Sn. These theoretical advances are enabled by systematic effective
field theories of the strong and weak interactions combined with powerful
quantum many-body techniques. This work paves the way for systematic
theoretical predictions for fundamental physics problems. These include the
synthesis of heavy elements in neutron star mergers and the search for
neutrino-less double--decay, where an analogous quenching puzzle is a
major source of uncertainty in extracting the neutrino mass scale.Comment: 20 pages, 18 figure
Effective operators from exact many-body renormalization
We construct effective two-body Hamiltonians and E2 operators for the p-shell
by performing ab initio no-core shell model (NCSM) calculations
for A=5 and A=6 nuclei and explicitly projecting the many-body Hamiltonians and
E2 operator onto the space. We then separate the effective E2
operator into one-body and two-body contributions employing the two-body
valence cluster approximation. We analyze the convergence of proton and neutron
valence one-body contributions with increasing model space size and explore the
role of valence two-body contributions. We show that the constructed effective
E2 operator can be parametrized in terms of one-body effective charges giving a
good estimate of the NCSM result for heavier p-shell nuclei.Comment: 9 pages, 8 figure
2-Oxoesters: A Novel Class of Potent and Selective Inhibitors of Cytosolic Group IVA Phospholipase A2.
Cytosolic phospholipase A2 (GIVA cPLA2) is the only PLA2 that exhibits a marked preference for hydrolysis of arachidonic acid containing phospholipid substrates releasing free arachidonic acid and lysophospholipids and giving rise to the generation of diverse lipid mediators involved in inflammatory conditions. Thus, the development of potent and selective GIVA cPLA2 inhibitors is of great importance. We have developed a novel class of such inhibitors based on the 2-oxoester functionality. This functionality in combination with a long aliphatic chain or a chain carrying an appropriate aromatic system, such as the biphenyl system, and a free carboxyl group leads to highly potent and selective GIVA cPLA2 inhibitors (X I(50) values 0.00007-0.00008) and docking studies aid in understanding this selectivity. A methyl 2-oxoester, with a short chain carrying a naphthalene ring, was found to preferentially inhibit the other major intracellular PLA2, the calcium-independent PLA2. In RAW264.7 macrophages, treatment with the most potent 2-oxoester GIVA cPLA2 inhibitor resulted in over 50% decrease in KLA-elicited prostaglandin D2 production. The novel, highly potent and selective GIVA cPLA2 inhibitors provide excellent tools for the study of the role of the enzyme and could contribute to the development of novel therapeutic agents for the treatment of inflammatory diseases
Recommended from our members
Deuterium-tritium TFTR plasmas in the high poloidal beta regime
Deuterium-tritium plasmas with enhanced energy confinement and stability have been produced in the high poloidal beta, advanced tokamak regime in TFTR. Confinement enhancement H {triple_bond} {tau}{sub E}/{tau}{sub E ITER-89P} > 4 has been obtained in a limiter H-mode configuration at moderate plasma current I{sub p} = 0.85 {minus} 1.46 MA. By peaking the plasma current profile, {beta}{sub N dia} {triple_bond} 10{sup 8} aB{sub 0}/I{sub p} = 3 has been obtained in these plasma,s exceeding the {beta}{sub N} limit for TFTR plasmas with lower internal inductance, l{sub i}. Fusion power exceeding 6.7 MW with a fusion power gain Q{sub DT} = 0.22 has been produced with reduced alpha particle first orbit loss provided by the increased l{sub i}
A mixed-mode shell-model theory for nuclear structure studies
We introduce a shell-model theory that combines traditional spherical states,
which yield a diagonal representation of the usual single-particle interaction,
with collective configurations that track deformations, and test the validity
of this mixed-mode, oblique basis shell-model scheme on Mg. The correct
binding energy (within 2% of the full-space result) as well as low-energy
configurations that have greater than 90% overlap with full-space results are
obtained in a space that spans less than 10% of the full space. The results
suggest that a mixed-mode shell-model theory may be useful in situations where
competing degrees of freedom dominate the dynamics and full-space calculations
are not feasible.Comment: 20 pages, 8 figures, revtex 12p
Accurate nuclear radii and binding energies from a chiral interaction
With the goal of developing predictive ab initio capability for light and medium-mass nuclei, two-nucleon and three-nucleon forces from chiral effective field theory are optimized simultaneously to low-energy nucleon-nucleon scattering data, as well as binding energies and radii of few-nucleon systems and selected isotopes of carbon and oxygen. Coupled-cluster calculations based on this interaction, named NNLOsat, yield accurate binding energies and radii of nuclei up to Ca-40, and are consistent with the empirical saturation point of symmetric nuclear matter. In addition, the low-lying collective J(pi) = 3(-) states in O-16 and 40Ca are described accurately, while spectra for selected p- and sd-shell nuclei are in reasonable agreement with experiment
- …