34 research outputs found

    Thin film solar cells based on the ternary compound Cu2SnS3

    Get PDF
    Alongside with Cu2ZnSnS4 and SnS, the p-type semiconductor Cu2SnS3 also consists of only Earth abundant and low-cost elements and shows comparable opto-electronic properties, with respect to Cu2ZnSnS4 and SnS, making it a promising candidate for photovoltaic applications of the future. In this work, the ternary compound has been produced via the annealing of an electrodeposited precursor in a sulfur and tin sulfide environment. The obtained absorber layer has been structurally investigated by X-ray diffraction and results indicate the crystal structure to be monoclinic. Its optical properties have been measured via photoluminescence, where an asymmetric peak at 0.95 eV has been found. The evaluation of the photoluminescence spectrum indicates a band gap of 0.93 eV which agrees well with the results from the external quantum efficiency. Furthermore, this semiconductor layer has been processed into a photovoltaic device with a power conversion efficiency of 0.54%, a short circuit current of 17.1 mA/cm2, an open circuit voltage of 104 mV hampered by a small shunt resistance, a fill factor of 30.4%, and a maximal external quantum efficiency of just less than 60%. In addition, the potential of this Cu2SnS3 absorber layer for photovoltaic applications is discussed

    Steep sulfur gradient in CZTSSe solar cells by H2_{2}S-assisted rapid surface sulfurization

    Get PDF
    Sulfur/selenium grading is a widely used optimization strategy in kesterite thin-film solar cells to obtain a bandgap-graded absorber material and to optimize optical and electrical properties of the solar-cell device. In this work, we present a novel approach to introduce a [S]/([S] + [Se]) grading for Cu2_{2}ZnSn(S,Se)4_{4} solar cells. In contrast to commonly used methods with slow process dynamics, the presented approach aims to create a fast sulfurization reaction on the surface of pure selenide kesterite absorbers by using highly reactive H2_{2}S gas and high sulfurization temperatures in a rapid flash-type process. With a combination of X-ray photoelectron spectroscopy, X-ray emission spectroscopy, Raman spectroscopy, and Raman-shallow angle cross sections spectroscopy, we gain depth-varied information on the [S]/([S] + [Se]) ratio and discuss the impact of different process parameter variations on the material and device properties. The results demonstrate the potential of the developed process to generate a steep gradient of sulfur that is confined mainly to the surface region of the absorber film

    Steep Sulfur Gradient in CZTSSe Solar Cells by H2S-Assisted Rapid Surface Sulfurization

    Get PDF
    Sulfur/selenium grading is a widely used optimization strategy in kesterite thin-film solar cells to obtain a bandgap-graded absorber material and to optimize optical and electrical properties of the solar-cell device. In this work, we present a novel approach to introduce a [S]/([S] + [Se]) grading for Cu ZnSn(S,Se) solar cells. In contrast to commonly used methods with slow process dynamics, the presented approach aims to create a fast sulfurization reaction on the surface of pure selenide kesterite absorbers by using highly reactive H S gas and high sulfurization temperatures in a rapid flash-type process. With a combination of X-ray photoelectron spectroscopy, X-ray emission spectroscopy, Raman spectroscopy, and Raman-shallow angle cross sections spectroscopy, we gain depth-varied information on the [S]/([S] + [Se]) ratio and discuss the impact of different process parameter variations on the material and device properties. The results demonstrate the potential of the developed process to generate a steep gradient of sulfur that is confined mainly to the surface region of the absorber film. 2 4

    Analyses of Local Open Circuit Voltages in Polycrystalline Cu(In,Ga)Se2 Thin Film Solar Cell Absorbers on the Micrometer Scale by Confocal Luminescence

    Get PDF
    Polycrystalline chalcopyrite absorbers in thin film solar cells exhibit distinct spatial inhomogeneities which are obviously introduced during growth of the grainy structure. Amongst several structural inhomogeneities in scale lengths of grains of one ?m or below, spatial variations of optoelectronic properties in much larger scales of some ?m can be observed, such as fluctuations in the splitting of quasi-Fermi levels in the range of several tens of meV. These have been quantitatively deduced via Planck's generalized law from spectrally resolved confocal room temperature luminescence scans. Since the necessary absorption length in thin film semiconductors is in the neighborhood of the wavelength of photons, for the evaluation of luminescence spectra wave optics with multireflection effects have been applied

    Vapor-Phase Incorporation of Ge in CZTSe Absorbers for Improved Stability of High-Efficiency Kesterite Solar Cells

    No full text
    We report an approach to incorporate Ge into Cu2ZnSnSe4 using GeSe vapor during the selenization step of alloyed metallic precursors. The vapor incorporation slowly begins at T ≈ 480 °C and peaks at 530 °C, resulting in a Ge-based composition shift inside the previously formed kesterite layer. We initially observe the formation of a Ge-rich surface layer that merges into a homogeneous distribution of the incorporated element during the further dwelling stage of the annealing. This approach is very versatile and could be used in many similar fabrication processes for incorporating Ge into CZTSe-absorber layers. Because the vapor-based composition shift in the layer happens after the formation of the absorber film towards the end of the fabrication process, most process parameters and the precursor structure may not need any significant re-optimization. The careful integration of this step could help to reduce Sn-related deep defects and accompanying VOC losses. The best CZTGSe-power-conversion efficiency obtained in this series is 10.4 % (with EG = 1.22 eV, FF = 54%, JSC = 36 mA/cm2, VOC = 540 mV, VOCdef,SQ = 417 mV). These results demonstrate the potential of this approach for Ge incorporation into kesterite absorbers
    corecore