47 research outputs found

    The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis

    Get PDF
    EphB4 and its cognitive ligand ephrinB2 play an important role in embryonic vessel development and vascular remodeling. In addition, several reports suggest that this receptor ligand pair is also involved in pathologic vessel formation in adults including tumor angiogenesis. Eph/ephrin signaling is a complex phenomena characterized by receptor forward signaling through the tyrosine kinase of the receptor and ephrin reverse signaling through various protein–protein interaction domains and phosphorylation motifs of the ephrin ligands. Therefore, interfering with EphR/ephrin signaling by the means of targeted gene ablation, soluble receptors, dominant negative mutants or antisense molecules often does not allow to discriminate between inhibition of Eph/ephrin forward and reverse signaling. We developed a specific small molecular weight kinase inhibitor of the EphB4 kinase, NVP-BHG712, which inhibits EphB4 kinase activity in the low nanomolar range in cellular assays showed high selectivity for targeting the EphB4 kinase when profiled against other kinases in biochemical as well as in cell based assays. Furthermore, NVP-BHG712 shows excellent pharmacokinetic properties and potently inhibits EphB4 autophosphorylation in tissues after oral administration. In vivo, NVP-BHG712 inhibits VEGF driven vessel formation, while it has only little effects on VEGF receptor (VEGFR) activity in vitro or in cellular assays. The data shown here suggest a close cross talk between the VEGFR and EphR signaling during vessel formation. In addition to its established function in vascular remodeling and endothelial arterio-venous differentiation, EphB4 forward signaling appears to be an important mediator of VEGF induced angiogenesis since inhibition of EphB4 forward signaling is sufficient to inhibit VEGF induced angiogenesis

    Industrial scale high-throughput screening delivers multiple fast acting macrofilaricides.

    Get PDF
    Nematodes causing lymphatic filariasis and onchocerciasis rely on their bacterial endosymbiont, Wolbachia, for survival and fecundity, making Wolbachia a promising therapeutic target. Here we perform a high-throughput screen of AstraZeneca's 1.3 million in-house compound library and identify 5 novel chemotypes with faster in vitro kill rates (<2 days) than existing anti-Wolbachia drugs that cure onchocerciasis and lymphatic filariasis. This industrial scale anthelmintic neglected tropical disease (NTD) screening campaign is the result of a partnership between the Anti-Wolbachia consortium (A∙WOL) and AstraZeneca. The campaign was informed throughout by rational prioritisation and triage of compounds using cheminformatics to balance chemical diversity and drug like properties reducing the chance of attrition from the outset. Ongoing development of these multiple chemotypes, all with superior time-kill kinetics than registered antibiotics with anti-Wolbachia activity, has the potential to improve upon the current therapeutic options and deliver improved, safer and more selective macrofilaricidal drugs

    The impact of e-learning on mathematics education: some experiences at university level

    No full text
    The aim of this paper is to illustrate a study about the use of some e-learning platforms for the teaching and learning of Mathematics at University level. The development and the spreading of Internet has allowed the access to a great amount of information and resources. The impact on education and training was unavoidable. The e-Learning Programme 0 launched by the European Commission is directed to the development of the potential offered by Internet to reach a greater access to Learning and Training and stresses «the need for innovative pedagogical approaches and for ambitious objectives regarding learning quality and easy access to e-learning resources and services»

    Inhibitors of the tyrosine kinase EphB4.:part 2: structure-based discovery and optimisation of 3,5-bis substituted anilinopyrimidines

    No full text
    Crystallographic studies of a range of 3-substituted anilinopyrimidine inhibitors of EphB4 have highlighted two alternative C-2 aniline conformations and this discovery has been exploited in the design of a highly potent series of 3,5-disubstituted anilinopyrimidines. The observed range of cellular activities has been rationalised on the basis of physicochemical and structural characteristics
    corecore