346 research outputs found

    A comes before B, like 1 comes before 2. Is the parietal cortex sensitive to ordinal relationships in both numbers and letters? An fMRI-adaptation study

    Get PDF
    How are number symbols (e.g., Arabic digits) represented in the brain? Functional resonance imaging adaptation (fMRI-A) research has indicated that the intraparietal sulcus (IPS) exhibits a decrease in activation with the repeated presentation of the same number, that is followed by a rebound effect with the presentation of a new number. This rebound effect is modulated by the numerical ratio or difference between presented numbers. It has been suggested that this ratio-dependent rebound effect is reflective of a link between the symbolic numerical representation system and an approximate magnitude system. Experiment 1 used fMRI-A to investigate an alternative hypothesis: that the rebound effect observed in the IPS is related to the ordinal relationships between symbols (e.g., 3 comes before 4; C after B). In Experiment 1, adult participants exhibited the predicted distance-dependent parametric rebound effect bilaterally in the IPS for number symbols during a number adaptation task, however, the same effect was not found anywhere in the brain in response to letters. When numbers were contrasted with letters (numbers \u3e letters), the left intraparietal lobule remained significant. Experiment 2 demonstrated that letter stimuli used in Experiment 1 generated a behavioral distance effect during an active ordinality task, despite the lack of a neural distance effect using fMRI-A. The current study does not support the hypothesis that general ordinal mechanisms underpin the neural parametric recovery effect in the IPS in response to number symbols. Additional research is needed to further our understanding of mechanisms underlying symbolic numerical representation in the brain

    An Extremely Lithium-Rich Bright Red Giant in the Globular Cluster M3

    Get PDF
    We have serendipitously discovered an extremely lithium-rich star on the red giant branch of the globular cluster M3 (NGC 5272). An echelle spectrum obtained with the Keck I HIRES reveals a Li I 6707 Angstrom resonance doublet of 520 milli-Angstrom equivalent width, and our analysis places the star among the most Li-rich giants known: log[epsilon(Li)] ~= +3.0. We determine the elemental abundances of this star, IV-101, and three other cluster members of similar luminosity and color, and conclude that IV-101 has abundance ratios typical of giants in M3 and M13 that have undergone significant mixing. We discuss mechanisms by which a low-mass star may be so enriched in Li, focusing on the mixing of material processed by the hydrogen-burning shell just below the convective envelope. While such enrichment could conceivably only happen rarely, it may in fact regularly occur during giant-branch evolution but be rarely detected because of rapid subsequent Li depletion.Comment: 7-page LaTeX file, including 2 encapsulated ps figures + 1 table; accepted for publication in the Astrophysical Journal Letter

    Alpha clustering and weak coupling in the A=90 region

    Full text link
    From the viewpoint of a unified description of cluster structure and scattering in the A=90 region, α\alpha scattering from 89^{89}Y is investigated. α\alpha clustering and weak coupling in 93^{93}Nb is discussed.Comment: 8 pages, 4 figure

    Chemical Abundances of the Leo II Dwarf Galaxy

    Full text link
    We use previously-published moderate-resolution spectra in combination with stellar atmosphere models to derive the first measured chemical abundance ratios in the Leo II dSph galaxy. We find that for spectra with SNR > 24, we are able to measure abundances from weak Ti, Fe and Mg lines located near the calcium infrared triplet (CaT). We also quantify and discuss discrepancies between the metallicities measured from Fe I lines and those estimated from the CaT features. We find that while the most metal-poor ([Fe/H] <-2.0]) Leo II stars have Ca and Ti abundance ratios similar to those of Galactic globular clusters, the more metal-rich stars show a gradual decline of Ti, Mg and Ca abundance ratio with increasing metallicity. Finding these trends in this distant and apparently dynamically stable dSph galaxy supports the hypothesis that the slow chemical enrichment histories of the dSph galaxies is universal, independent of any interaction with the Milky Way. Combining our spectroscopic abundances with published broadband photometry and updated isochrones, we are able to approximate stellar ages for our bright RGB stars to a relative precision of 2-3 Gyr. While the derived age-metallicity relationship of Leo II hints at some amount of slow enrichment, the data are still statistically consistent with no enrichment over the history of Leo II.Comment: Accepted to A

    Abundances in bulge stars from high-resolution, near-IR spectra I. The CNO elements observed during the science verification of CRIRES at VLT

    Full text link
    The formation and evolution of the Milky Way bulge is not yet well understood and its classification is ambiguous. Constraints can, however, be obtained by studying the abundances of key elements in bulge stars. The aim of this study is to determine the chemical evolution of CNO, and a few other elements in stars in the Galactic bulge, and to discuss the sensitivities of the derived abundances from molecular lines. High-resolution, near-IR spectra in the H band were recorded using VLT/CRIRES. Due to the high and variable visual extinction in the line-of-sight towards the bulge, an analysis in the near-IR is preferred. The CNO abundances can all be determined simultaneously from the numerous molecular lines in the wavelength range observed. The three giant stars in Baade's window presented here are the first bulge stars observed with CRIRES. We have especially determined the CNO abundances, with uncertainties of less than 0.20 dex, from CO, CN, and OH lines. Since the systematic uncertainties in the derived CNO abundances due to uncertainties in the stellar fundamental parameters, notably Teff, are significant, a detailed discussion of the sensitivities of the derived abundances is included. We find good agreement between near-IR and optically determined O, Ti, Fe, and Si abundances. Two of our stars show a solar [C+N/Fe], suggesting that these giants have experienced the first dredge-up and that the oxygen abundance should reflect the original abundance of the giants. The two giants fit into the picture, in which there is no significant difference between the O abundance in bulge and thick-disk stars. Our determination of the S abundances is the first for bulge stars. The high [S/Fe] values for all the stars indicate a high star-formation rate in an early phase of the bulge evolution.Comment: Accepted by A&

    Abundances of Baade's Window Giants from Keck/HIRES Spectra: I. Stellar Parameters and [Fe/H] Values

    Full text link
    We present the first results of a new abundance survey of the Milky Way bulge based on Keck/HIRES spectra of 27 K-giants in the Baade's Window (l=1l = 1, b=−4b = -4) field. The spectral data used in this study are of much higher resolution and signal-to-noise than previous optical studies of Galactic bulge stars. The [Fe/H] values of our stars, which range between -1.29 and +0.51+0.51, were used to recalibrate large low resolution surveys of bulge stars. Our best value for the mean [Fe/H] of the bulge is −0.10±0.04-0.10 \pm 0.04. This mean value is similar to the mean metallicity of the local disk and indicates that there cannot be a strong metallicity gradient inside the solar circle. The metallicity distribution of stars confirms that the bulge does not suffer from the so-called ``G-dwarf'' problem. This paper also details the new abundance techniques necessary to analyze very metal-rich K-giants, including a new Fe line list and regions of low blanketing for continuum identification.Comment: Accepted for publication in January 2006 Astrophysical Journal. Long tables 3--6 withheld to save space (electronic tables in journal paper). 53 pages, 10 figures, 9 table

    Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. II. Ages, metallicities, detailed elemental abundances, and connections to the Galactic thick disc

    Get PDF
    The Bulge is the least understood major stellar population of the Milky Way. Most of what we know about the formation and evolution of the Bulge comes from bright giant stars. The underlying assumption that giants represent all the stars, and accurately trace the chemical evolution of a stellar population, is under debate. In particular, recent observations of a few microlensed dwarf stars give a very different picture of the evolution of the Bulge from that given by the giant stars. [ABRIDGED] We perform a detailed elemental abundance analysis of dwarf stars in the Galactic bulge, based on high-resolution spectra that were obtained while the stars were optically magnified during gravitational microlensing events. [ABRIDGED] We present detailed elemental abundances and stellar ages for six new dwarf stars in the Galactic bulge. Combining these with previous events, here re-analysed with the same methods, we study a homogeneous sample of 15 stars, which constitute the largest sample to date of microlensed dwarf stars in the Galactic bulge. We find that the stars span the full range of metallicities from [Fe/H]=-0.72 to +0.54, and an average metallicity of =-0.08+/-0.47, close to the average metallicity based on giant stars in the Bulge. Furthermore, the stars follow well-defined abundance trends, that for [Fe/H]<0 are very similar to those of the local Galactic thick disc. This suggests that the Bulge and the thick disc have had, at least partially, comparable chemical histories. At sub-solar metallicities we find the Bulge dwarf stars to have consistently old ages, while at super-solar metallicities we find a wide range of ages. Using the new age and abundance results from the microlensed dwarf stars we investigate possible formation scenarios for the Bulge.Comment: New version accepted for publication in Astronomy and Astrophysic

    Anti–Vascular Endothelial Growth Factor Drugs Compared With Panretinal Photocoagulation for the Treatment of Proliferative Diabetic Retinopathy: A Cost-Effectiveness Analysis

    Get PDF
    \ua9 2024Objectives: This study aimed to evaluate the cost-effectiveness of anti–vascular endothelial growth factor drugs (anti-VEGFs) compared with panretinal photocoagulation (PRP) for treating proliferative diabetic retinopathy (PDR) in the United Kingdom. Methods: A discrete event simulation model was developed, informed by individual participant data meta-analysis. The model captures treatment effects on best corrected visual acuity in both eyes, and the occurrence of diabetic macular edema and vitreous hemorrhage. The model also estimates the value of undertaking further research to resolve decision uncertainty. Results: Anti-VEGFs are unlikely to generate clinically meaningful benefits over PRP. The model predicted anti-VEGFs be more costly and similarly effective as PRP, generating 0.029 fewer quality-adjusted life-years at an additional cost of \ua33688, with a net health benefit of −0.214 at a \ua320 000 willingness-to-pay threshold. Scenario analysis results suggest that only under very select conditions may anti-VEGFs offer potential for cost-effective treatment of PDR. The consequences of loss to follow-up were an important driver of model outcomes. Conclusions: Anti-VEGFs are unlikely to be a cost-effective treatment for early PDR compared with PRP. Anti-VEGFs are generally associated with higher costs and similar health outcomes across various scenarios. Although anti-VEGFs were associated with lower diabetic macular edema rates, the number of cases avoided is insufficient to offset the additional treatment costs. Key uncertainties relate to the long-term comparative effectiveness of anti-VEGFs, particularly considering the real-world rates and consequences of treatment nonadherence. Further research on long-term visual acuity and rates of vision-threatening complications may be beneficial in resolving uncertainties

    Non-LTE line formation for heavy elements in four very metal-poor stars

    Full text link
    Stellar parameters and abundances of Na, Mg, Al, K, Ca, Sr, Ba, and Eu are determined for four very metal-poor stars (-2.66 < [Fe/H] < -2.15) based on non-LTE line formation and analysis of high-resolution (R ~60000 and 90000) high signal-to-noise (S/N > 200) observed spectra. A model atom for H I is presented. An effective temperature was obtained from the Balmer Halpha and Hbeta line wing fits, the surface gravity from the Hipparcos parallax if available and the non-LTE ionization balance between Ca I and Ca II. Based on the hyperfine structure affecting the Ba II resonance line, the fractional abundance of the odd isotopes of Ba was derived for HD 84937 and HD 122563 from a requirement that Ba abundances from the resonance line and subordinate lines of Ba II must be equal. For each star, non-LTE leads to a consistency of Teff from two Balmer lines and to a higher temperature compared to the LTE case, by up to 60 K. Non-LTE effects are important in spectroscopic determination of surface gravity from Ca I/Ca II. For each star with a known trigonometric gravity, non-LTE abundances from the lines of two ionization stages agree within the error bars, while a difference in the LTE abundances consists of 0.23 dex to 0.40 dex for different stars. Departures from LTE are found to be significant for the investigated atoms, and they strongly depend on stellar parameters. For HD 84937, the Eu/Ba ratio is consistent with the relative solar system r-process abundances, and the fraction of the odd isotopes of Ba, f_odd, equals 0.43+-0.14. The latter can serve as a constraint on r-process models. The lower Eu/Ba ratio and f_odd = 0.22+-0.15 found for HD 122563 suggest that the s-process or the unknown process has contributed significantly to the Ba abundance in this star.Comment: accepted for publication in A&A, November 16, 200

    Detections of Diffuse Interstellar Bands in the SDSS Low-resolution Spectra

    Full text link
    Diffuse interstellar bands (DIBs) have been discovered for almost a century, but their nature remains one of the most challenging problems in astronomical spectroscopy. Most recent work to identify and investigate the properties and carriers of DIBs concentrates on high-resolution spectroscopy of selected sight-lines. In this paper, we report detections of DIBs in the Sloan Digital Sky Survey (SDSS) low-resolution spectra of a large sample of Galactic stars. Using a template subtraction method, we have successfully identified the DIBs λ\lambdaλ\lambda5780, 6283 in the SDSS spectra of a sample of about 2,000 stars and measured their strengths and radial velocities. The sample is by far the largest ever assembled. The targets span a large range of reddening, E(B-V) ~ 0.2 -- 1.0, and are distributed over a large sky area and involve a wide range of stellar parameters (effective temperature, surface gravity and metallicity), confirming that the carriers of DIBs are ubiquitous in the diffuse interstellar medium (ISM). The sample is used to investigate relations between strengths of DIBs and magnitudes of line-of-sight extinction, yielding results (i.e., EW(5780)= 0.61 x E(B-V) and EW(6283) = 1.26 x E(B-V)) consistent with previous studies. DIB features have also been detected in the commissioning spectra of the Guoshoujing Telescope (LAMOST) of resolving power similar to that of SDSS. Detections of DIBs towards hundreds of thousands of stars are expected from the on-going and up-coming large scale spectroscopic surveys such as RAVE, SDSS III and LAMOST, particularly from the LAMOST Digital Sky Survey of the Galactic Anti-center (DSS-GAC). Such a huge database will provide an unprecedented opportunity to study the demographical distribution and nature of DIBs as well as using DIBs to probe the distribution and properties of the ISM and the dust extinction.Comment: 10 pages, 5 figures, accepted for publication in MNRA
    • 

    corecore