9 research outputs found

    Cold flow modelling of dual fluidised bed pyrolysis

    Get PDF
    High temperature pyrolysis at about 600-700°C of carbon containing waste materials (plastic waste, shredded old tires, biogenic residues, etc.) is an attractive technology for substitution of fossil fuels in industrial processes. A dual fluidized bed system is investigated in a scaled cold flow model. This model consists of a riser as combustion section and a bubbling fluidized bed as pyrolysis section. The pyrolysis section is aimed to convert the solid feed material into pyrolysis oil as well as permanent gas components. This gas stream can be directly used e.g. in rotary kilns at temperatures of 400-600°C with high tar content and therefore high heating value. The char is transported with the bed material to the riser to provide the energy for the pyrolysis, transported via the hot bed material. Moreover, the pyrolysing section will be used to separate unconvertable materials such as metal pieces, stones, etc. from the process. For certain feed materials the pyrolysing section could be built as circulating fluidized bed to perform a classification of the feed material. Thus different residence time in the pyrolyser can be achieved, depending on the fuel particle size and fluidization. The results are displayed inside a regime map of gas-solid fluidized beds. Bed material residence times as well as residence times of model particles of the feedstock are given. The investigations lead to a design of a system to be applicable for various feedstock materials as input for industrial processes

    Cold flow modelling of dual fluidised bed pyrolysi

    Get PDF
    High temperature pyrolysis at about 600-700°C of carbon containing waste materials (plastic waste, shredded old tires, biogenic residues, etc.) is an attractive technology for substitution of fossil fuels in industrial processes. A dual fluidized bed system is investigated in a scaled cold flow model. This model consists of a riser as combustion section and a bubbling fluidized bed as pyrolysis section. The pyrolysis section is aimed to convert the solid feed material into pyrolysis oil as well as permanent gas components. This gas stream can be directly used e.g. in rotary kilns at temperatures of 400-600°C with high tar content and therefore high heating value. The char is transported with the bed material to the riser to provide the energy for the pyrolysis, transported via the hot bed material. Moreover, the pyrolysing section will be used to separate unconvertable materials such as metal pieces, stones, etc. from the process. For certain feed materials the pyrolysing section could be built as circulating fluidized bed to perform a classification of the feed material. Thus different residence time in the pyrolyser can be achieved, depending on the fuel particle size and fluidization. The results are displayed inside a regime map of gas-solid fluidized beds. Bed material residence times as well as residence times of model particles of the feedstock are given. The investigations lead to a design of a system to be applicable for various feedstock materials as input for industrial processes

    The adolescence of electronic health records: Status and perspectives for large scale implementation

    No full text
    Health informatics started to evolve decades ago with the intention to support healthcare using computers. Since then Electronic health records (EHRs) and personal health records (PHRs) have become available but widespread adoption was limited by lack of interoperability and security issues. This paper discusses the feasibility of interoperable standards based EHRs and PHRs drawing on experience from implementation projects. It outlines challenges and goals in education and implementation for the next years

    New approaches in the management of choroidal neovascular membrane in age-related macular degeneration.

    No full text
    Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly population. The prevalence is reported to be 1.2-1.4% in several population-based epidemiological studies. Currently 25-30 million people worldwide are blind due to AMD. With the aging world population it is bound to increase significantly, and could become a significant public health problem in next two decades, with serious socio-economic implications. Several strategies are today available to treat the wet form of AMD, which is responsible for significant visual loss. These were until recently confined to laser photocoagulation, and subretinal surgery, but today two other modalities, namely, radiation and photodynamic therapy, are available. These treatment modalities however, are aimed at preservation of vision only, and not at reversing the process of the disease. Further research on antiangiogenic drugs and gene therapy could significantly help AMD patients

    List of Papers Author Title of Abstract Page

    No full text
    The workshop aims at providing a platform for young researchers to present their work. These presentations will be commented by experienced panelists. The workshop serves as a forum for the participants to get in contact with other researchers in the field and to become familiar with other approaches and future research topics
    corecore