1,635 research outputs found
Radiation-induced insulator discharge pulses in the CRRES internal discharge monitor satellite experiment
The Internal Discharge Monitor (IDM) was designed to observe electrical pulses from common electrical insulators in space service. The sixteen insulator samples included twelve planar printed circuit boards and four cables. The samples were fully enclosed, mutually isolated, and space radiation penetrated 0.02 cm of aluminum before striking the samples. Pulsing began on the seventh orbit, the maximum pulse rate occurred on the seventeenth orbit when 13 pulses occurred, and the pulses slowly diminished to about one per 3 orbits six months later. After 8 months, the radiation belts abruptly increased and the pulse rates attained a new high. These pulse rates were in agreement with laboratory experience on shorter time scales. Several of the samples never pulsed. If the pulses were not confined within IDM, the physical processes could spread to become a full spacecraft anomaly. The IDM results indicate the rate at which small insulator pulses occur. Small pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on the Combined Release and Radiation Effects Satellite
Dissection with the Fewest Pieces is Hard, Even to Approximate
We prove that it is NP-hard to dissect one simple orthogonal polygon into another using a given number of pieces, as is approximating the fewest pieces to within a factor of 1+1/1080−ε .National Science Foundation (U.S.) (Grant CCF-1217423)National Science Foundation (U.S.) (Grant CCF-1065125)National Science Foundation (U.S.) (Grant CCF-1420692
Range Queries on Uncertain Data
Given a set of uncertain points on the real line, each represented by
its one-dimensional probability density function, we consider the problem of
building data structures on to answer range queries of the following three
types for any query interval : (1) top- query: find the point in that
lies in with the highest probability, (2) top- query: given any integer
as part of the query, return the points in that lie in
with the highest probabilities, and (3) threshold query: given any threshold
as part of the query, return all points of that lie in with
probabilities at least . We present data structures for these range
queries with linear or nearly linear space and efficient query time.Comment: 26 pages. A preliminary version of this paper appeared in ISAAC 2014.
In this full version, we also present solutions to the most general case of
the problem (i.e., the histogram bounded case), which were left as open
problems in the preliminary versio
Spiral model, jamming percolation and glass-jamming transitions
The Spiral Model (SM) corresponds to a new class of kinetically constrained
models introduced in joint works with D.S. Fisher [8,9]. They provide the first
example of finite dimensional models with an ideal glass-jamming transition.
This is due to an underlying jamming percolation transition which has
unconventional features: it is discontinuous (i.e. the percolating cluster is
compact at the transition) and the typical size of the clusters diverges faster
than any power law, leading to a Vogel-Fulcher-like divergence of the
relaxation time. Here we present a detailed physical analysis of SM, see [5]
for rigorous proofs. We also show that our arguments for SM does not need any
modification contrary to recent claims of Jeng and Schwarz [10].Comment: 9 pages, 7 figures, proceedings for StatPhys2
Selection from read-only memory with limited workspace
Given an unordered array of elements drawn from a totally ordered set and
an integer in the range from to , in the classic selection problem
the task is to find the -th smallest element in the array. We study the
complexity of this problem in the space-restricted random-access model: The
input array is stored on read-only memory, and the algorithm has access to a
limited amount of workspace. We prove that the linear-time prune-and-search
algorithm---presented in most textbooks on algorithms---can be modified to use
bits instead of words of extra space. Prior to our
work, the best known algorithm by Frederickson could perform the task with
bits of extra space in time. Our result separates
the space-restricted random-access model and the multi-pass streaming model,
since we can surpass the lower bound known for the latter
model. We also generalize our algorithm for the case when the size of the
workspace is bits, where . The running time
of our generalized algorithm is ,
slightly improving over the
bound of Frederickson's algorithm. To obtain the improvements mentioned above,
we developed a new data structure, called the wavelet stack, that we use for
repeated pruning. We expect the wavelet stack to be a useful tool in other
applications as well.Comment: 16 pages, 1 figure, Preliminary version appeared in COCOON-201
Pearl Millet as an Alternate Host of the Sorghum Ergot Pathogen, Claviceps africana
The infectivity of C. africana on pearl millet (Pennisetum glaucum) lines in Africa was studied. C. africana consistently gave 100% disease incidence on male-sterile sorghum in experiments undertaken in Zimbabwe. C. fusiformis established disease with moderate incidence on most but not all lines tested. In contrast, C. africana established a parasitic association with all the pearl millet lines tested, with incidence as high as 23% in ICMSR 260, the genotype that also supported the highest incidence with C. fusiformis. However, the disease severities were always low, between 1 and 5%. All infections on pearl millet were verified as the sphacelial stage by virtue of their conidial characteristics. After 1 passage through a pearl millet host, C. africana did not apparently become more infectious on this host
Successful use of axonal transport for drug delivery by synthetic molecular vehicles
We report the use of axonal transport to achieve intraneural drug delivery. We constructed a novel tripartite complex of an axonal transport facilitator conjugated to a linker molecule bearing up to a hundred reversibly attached drug molecules. The complex efficiently enters nerve terminals after intramuscular or intradermal administration and travels within axonal processes to neuron cell bodies. The tripartite agent provided 100-fold amplification of saturable neural uptake events, delivering multiple drug molecules per complex. _In vivo_, analgesic drug delivery to systemic and to non-targeted neural tissues was greatly reduced compared to existing routes of administration, thus exemplifying the possibility of specific nerve root targeting and effectively increasing the potency of the candidate drug gabapentin 300-fold relative to oral administration
Capacitated Vehicle Routing with Non-Uniform Speeds
The capacitated vehicle routing problem (CVRP) involves distributing
(identical) items from a depot to a set of demand locations, using a single
capacitated vehicle. We study a generalization of this problem to the setting
of multiple vehicles having non-uniform speeds (that we call Heterogenous
CVRP), and present a constant-factor approximation algorithm.
The technical heart of our result lies in achieving a constant approximation
to the following TSP variant (called Heterogenous TSP). Given a metric denoting
distances between vertices, a depot r containing k vehicles with possibly
different speeds, the goal is to find a tour for each vehicle (starting and
ending at r), so that every vertex is covered in some tour and the maximum
completion time is minimized. This problem is precisely Heterogenous CVRP when
vehicles are uncapacitated.
The presence of non-uniform speeds introduces difficulties for employing
standard tour-splitting techniques. In order to get a better understanding of
this technique in our context, we appeal to ideas from the 2-approximation for
scheduling in parallel machine of Lenstra et al.. This motivates the
introduction of a new approximate MST construction called Level-Prim, which is
related to Light Approximate Shortest-path Trees. The last component of our
algorithm involves partitioning the Level-Prim tree and matching the resulting
parts to vehicles. This decomposition is more subtle than usual since now we
need to enforce correlation between the size of the parts and their distances
to the depot
- …