1,635 research outputs found

    Return to water| [Poems]

    Get PDF

    Radiation-induced insulator discharge pulses in the CRRES internal discharge monitor satellite experiment

    Get PDF
    The Internal Discharge Monitor (IDM) was designed to observe electrical pulses from common electrical insulators in space service. The sixteen insulator samples included twelve planar printed circuit boards and four cables. The samples were fully enclosed, mutually isolated, and space radiation penetrated 0.02 cm of aluminum before striking the samples. Pulsing began on the seventh orbit, the maximum pulse rate occurred on the seventeenth orbit when 13 pulses occurred, and the pulses slowly diminished to about one per 3 orbits six months later. After 8 months, the radiation belts abruptly increased and the pulse rates attained a new high. These pulse rates were in agreement with laboratory experience on shorter time scales. Several of the samples never pulsed. If the pulses were not confined within IDM, the physical processes could spread to become a full spacecraft anomaly. The IDM results indicate the rate at which small insulator pulses occur. Small pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on the Combined Release and Radiation Effects Satellite

    Dissection with the Fewest Pieces is Hard, Even to Approximate

    Get PDF
    We prove that it is NP-hard to dissect one simple orthogonal polygon into another using a given number of pieces, as is approximating the fewest pieces to within a factor of 1+1/1080−ε .National Science Foundation (U.S.) (Grant CCF-1217423)National Science Foundation (U.S.) (Grant CCF-1065125)National Science Foundation (U.S.) (Grant CCF-1420692

    Range Queries on Uncertain Data

    Full text link
    Given a set PP of nn uncertain points on the real line, each represented by its one-dimensional probability density function, we consider the problem of building data structures on PP to answer range queries of the following three types for any query interval II: (1) top-11 query: find the point in PP that lies in II with the highest probability, (2) top-kk query: given any integer knk\leq n as part of the query, return the kk points in PP that lie in II with the highest probabilities, and (3) threshold query: given any threshold τ\tau as part of the query, return all points of PP that lie in II with probabilities at least τ\tau. We present data structures for these range queries with linear or nearly linear space and efficient query time.Comment: 26 pages. A preliminary version of this paper appeared in ISAAC 2014. In this full version, we also present solutions to the most general case of the problem (i.e., the histogram bounded case), which were left as open problems in the preliminary versio

    Spiral model, jamming percolation and glass-jamming transitions

    Full text link
    The Spiral Model (SM) corresponds to a new class of kinetically constrained models introduced in joint works with D.S. Fisher [8,9]. They provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to an underlying jamming percolation transition which has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law, leading to a Vogel-Fulcher-like divergence of the relaxation time. Here we present a detailed physical analysis of SM, see [5] for rigorous proofs. We also show that our arguments for SM does not need any modification contrary to recent claims of Jeng and Schwarz [10].Comment: 9 pages, 7 figures, proceedings for StatPhys2

    Selection from read-only memory with limited workspace

    Full text link
    Given an unordered array of NN elements drawn from a totally ordered set and an integer kk in the range from 11 to NN, in the classic selection problem the task is to find the kk-th smallest element in the array. We study the complexity of this problem in the space-restricted random-access model: The input array is stored on read-only memory, and the algorithm has access to a limited amount of workspace. We prove that the linear-time prune-and-search algorithm---presented in most textbooks on algorithms---can be modified to use Θ(N)\Theta(N) bits instead of Θ(N)\Theta(N) words of extra space. Prior to our work, the best known algorithm by Frederickson could perform the task with Θ(N)\Theta(N) bits of extra space in O(NlgN)O(N \lg^{*} N) time. Our result separates the space-restricted random-access model and the multi-pass streaming model, since we can surpass the Ω(NlgN)\Omega(N \lg^{*} N) lower bound known for the latter model. We also generalize our algorithm for the case when the size of the workspace is Θ(S)\Theta(S) bits, where lg3NSN\lg^3{N} \leq S \leq N. The running time of our generalized algorithm is O(Nlg(N/S)+N(lgN)/lgS)O(N \lg^{*}(N/S) + N (\lg N) / \lg{} S), slightly improving over the O(Nlg(N(lgN)/S)+N(lgN)/lgS)O(N \lg^{*}(N (\lg N)/S) + N (\lg N) / \lg{} S) bound of Frederickson's algorithm. To obtain the improvements mentioned above, we developed a new data structure, called the wavelet stack, that we use for repeated pruning. We expect the wavelet stack to be a useful tool in other applications as well.Comment: 16 pages, 1 figure, Preliminary version appeared in COCOON-201

    Pearl Millet as an Alternate Host of the Sorghum Ergot Pathogen, Claviceps africana

    Get PDF
    The infectivity of C. africana on pearl millet (Pennisetum glaucum) lines in Africa was studied. C. africana consistently gave 100% disease incidence on male-sterile sorghum in experiments undertaken in Zimbabwe. C. fusiformis established disease with moderate incidence on most but not all lines tested. In contrast, C. africana established a parasitic association with all the pearl millet lines tested, with incidence as high as 23% in ICMSR 260, the genotype that also supported the highest incidence with C. fusiformis. However, the disease severities were always low, between 1 and 5%. All infections on pearl millet were verified as the sphacelial stage by virtue of their conidial characteristics. After 1 passage through a pearl millet host, C. africana did not apparently become more infectious on this host

    Successful use of axonal transport for drug delivery by synthetic molecular vehicles

    Get PDF
    We report the use of axonal transport to achieve intraneural drug delivery. We constructed a novel tripartite complex of an axonal transport facilitator conjugated to a linker molecule bearing up to a hundred reversibly attached drug molecules. The complex efficiently enters nerve terminals after intramuscular or intradermal administration and travels within axonal processes to neuron cell bodies. The tripartite agent provided 100-fold amplification of saturable neural uptake events, delivering multiple drug molecules per complex. _In vivo_, analgesic drug delivery to systemic and to non-targeted neural tissues was greatly reduced compared to existing routes of administration, thus exemplifying the possibility of specific nerve root targeting and effectively increasing the potency of the candidate drug gabapentin 300-fold relative to oral administration

    Capacitated Vehicle Routing with Non-Uniform Speeds

    Get PDF
    The capacitated vehicle routing problem (CVRP) involves distributing (identical) items from a depot to a set of demand locations, using a single capacitated vehicle. We study a generalization of this problem to the setting of multiple vehicles having non-uniform speeds (that we call Heterogenous CVRP), and present a constant-factor approximation algorithm. The technical heart of our result lies in achieving a constant approximation to the following TSP variant (called Heterogenous TSP). Given a metric denoting distances between vertices, a depot r containing k vehicles with possibly different speeds, the goal is to find a tour for each vehicle (starting and ending at r), so that every vertex is covered in some tour and the maximum completion time is minimized. This problem is precisely Heterogenous CVRP when vehicles are uncapacitated. The presence of non-uniform speeds introduces difficulties for employing standard tour-splitting techniques. In order to get a better understanding of this technique in our context, we appeal to ideas from the 2-approximation for scheduling in parallel machine of Lenstra et al.. This motivates the introduction of a new approximate MST construction called Level-Prim, which is related to Light Approximate Shortest-path Trees. The last component of our algorithm involves partitioning the Level-Prim tree and matching the resulting parts to vehicles. This decomposition is more subtle than usual since now we need to enforce correlation between the size of the parts and their distances to the depot
    corecore