624 research outputs found

    A Review of Current and Historical Research Contributions to the Development of Ground Autonomous Vehicles for Agriculture

    Get PDF
    In this study, a comprehensive overview of the available autonomous ground platforms developed by universities and research groups that were specifically designed to handle agricultural tasks was performed. As cost reduction and safety improvements are two of the most critical aspects for farmers, the development of autonomous vehicles can be of major interest, especially for those applications that are lacking in terms of mechanization improvements. This review aimed to provide a literature evaluation of present and historical research contributions toward designing and prototyping agricultural ground unmanned vehicles. The review was motivated by the intent to disseminate to the scientific community the main features of the autonomous tractor named BOPS-1960, which was conceived in the 1960s at the Alma Mater Studiorum University of Bologna (UNIBO). Jointly, the main characteristics of the modern DEDALO unmanned ground vehicle (UGV) for orchard and vineyard operations that was designed recently were evaluated. The basic principles, technology and sensors used in the two UNIBO prototypes are described in detail, together with an analysis of UGVs for agriculture conceived in recent years by research centers all around the world

    Strict inequalities of critical values in continuum percolation

    Full text link
    We consider the supercritical finite-range random connection model where the points x,yx,y of a homogeneous planar Poisson process are connected with probability f(∣y−x∣)f(|y-x|) for a given ff. Performing percolation on the resulting graph, we show that the critical probabilities for site and bond percolation satisfy the strict inequality pcsite>pcbondp_c^{\rm site} > p_c^{\rm bond}. We also show that reducing the connection function ff strictly increases the critical Poisson intensity. Finally, we deduce that performing a spreading transformation on ff (thereby allowing connections over greater distances but with lower probabilities, leaving average degrees unchanged) {\em strictly} reduces the critical Poisson intensity. This is of practical relevance, indicating that in many real networks it is in principle possible to exploit the presence of spread-out, long range connections, to achieve connectivity at a strictly lower density value.Comment: 38 pages, 8 figure

    Energy absorption in actual tractor rollovers with different tire configurations

    Get PDF
    In order to better understand the complexities of modern tractor rollover, this paper investigates the energy absorbed by a Roll-Over Protective Structure (ROPS) cab during controlled lateral rollover testing carried out on a modern narrow-track tractor with a silent-block suspended ROPS cab. To investigate how different tractor set-ups may influence ROPS and energy partitioning, tests were conducted with two different wheel configurations, wide (equivalent to normal ‘open field’ operation) and narrow (equivalent to ‘orchard/vineyard’ operation), and refer to both the width of the tires and the corresponding track. Dynamic load cells and displacement transducers located at the ROPS-ground impact points provided a direct measurement of the energy absorbed by the ROPS cab frame. A trilateration method was developed and mounted onboard to measure load cell trajectory with respect to the cab floor in real-time. The associated video record of each rollover event provided further information and opportunity to explain the acquired data. The narrow tire configuration consistently subjected the ROPS cab frame to more energy than the wide tire arrangement. To better evaluate the influence of the ROPS cab silent-blocks in lateral rollover, static and dynamic tests were performed. The results confirm that tires influence the energy partition significantly and that further understanding of silent-blocks’ dynamic performance is warranted

    Impact of boundaries on fully connected random geometric networks

    Full text link
    Many complex networks exhibit a percolation transition involving a macroscopic connected component, with universal features largely independent of the microscopic model and the macroscopic domain geometry. In contrast, we show that the transition to full connectivity is strongly influenced by details of the boundary, but observe an alternative form of universality. Our approach correctly distinguishes connectivity properties of networks in domains with equal bulk contributions. It also facilitates system design to promote or avoid full connectivity for diverse geometries in arbitrary dimension.Comment: 6 pages, 3 figure

    Temperature Dependent Empirical Pseudopotential Theory For Self-Assembled Quantum Dots

    Full text link
    We develop a temperature dependent empirical pseudopotential theory to study the electronic and optical properties of self-assembled quantum dots (QDs) at finite temperature. The theory takes the effects of both lattice expansion and lattice vibration into account. We apply the theory to the InAs/GaAs QDs. For the unstrained InAs/GaAs heterostructure, the conduction band offset increases whereas the valence band offset decreases with increasing of the temperature, and there is a type-I to type-II transition at approximately 135 K. Yet, for InAs/GaAs QDs, the holes are still localized in the QDs even at room temperature, because the large lattice mismatch between InAs and GaAs greatly enhances the valence band offset. The single particle energy levels in the QDs show strong temperature dependence due to the change of confinement potentials. Because of the changes of the band offsets, the electron wave functions confined in QDs increase by about 1 - 5%, whereas the hole wave functions decrease by about 30 - 40% when the temperature increases from 0 to 300 K. The calculated recombination energies of exciton, biexciton and charged excitons show red shifts with increasing of the temperature, which are in excellent agreement with available experimental data

    Acute effects of whole-body vibrations on the fatigue induced by multiple repeated sprint ability test in soccer players

    Get PDF
    Background: We tested the hypothesis that whole-body vibration (WBV) positively affects the fatigue process ensuing from repeated bouts of maximal efforts, as induced by repeated sprints' ability (RSA). Eleven male soccer players performed three sets of six repeated shuttle sprints (40 meters). Methods: Eleven male soccer players (age 23.6±4.5 years) were cross-randomized to perform WBW before RSA and during the recovery between sets (WBV-with) or to warm-up and passive recovery between sets (WBV-without). The effects of WBV were quantified by sprint time (ST) and blood lactate concentration (LA), collected up to 15 min after completion of tests. Results: ST during RSA showed a better maintenance of performance in the WBV-with compared to WBV-without condition in all three sets, reaching a statistical significance between-groups during the 2nd and 3rd set (P<0.05). No significant differences in ST over the sets were detected in WBV-with, whereas a significant decrease was observed in the WBV-without condition (P<0.001). LA recovered significantly faster from the 9th to 15th minute of recovery in WBV-with as compared to WBV-without (P<0.05). Conclusions: These findings would indicate that WBV performed during recovery between RSA sets can delay the onset of muscle fatigue resulting in a better maintenance of sprint performance

    Full Connectivity: Corners, edges and faces

    Full text link
    We develop a cluster expansion for the probability of full connectivity of high density random networks in confined geometries. In contrast to percolation phenomena at lower densities, boundary effects, which have previously been largely neglected, are not only relevant but dominant. We derive general analytical formulas that show a persistence of universality in a different form to percolation theory, and provide numerical confirmation. We also demonstrate the simplicity of our approach in three simple but instructive examples and discuss the practical benefits of its application to different models.Comment: 28 pages, 8 figure

    DNA damage and transcriptional regulation in iPSC-derived neurons from Ataxia Telangiectasia patients

    Get PDF
    Abstract Ataxia Telangiectasia (A-T) is neurodegenerative syndrome caused by inherited mutations inactivating the ATM kinase, a master regulator of the DNA damage response (DDR). What makes neurons vulnerable to ATM loss remains unclear. In this study we assessed on human iPSC-derived neurons whether the abnormal accumulation of DNA-Topoisomerase 1 adducts (Top1ccs) found in A-T impairs transcription elongation, thus favoring neurodegeneration. Furthermore, whether neuronal activity-induced immediate early genes (IEGs), a process involving the formation of DNA breaks, is affected by ATM deficiency. We found that Top1cc trapping by CPT induces an ATM-dependent DDR as well as an ATM-independent induction of IEGs and repression especially of long genes. As revealed by nascent RNA sequencing, transcriptional elongation and recovery were found to proceed with the same rate, irrespective of gene length and ATM status. Neuronal activity induced by glutamate receptors stimulation, or membrane depolarization with KCl, triggered a DDR and expression of IEGs, the latter independent of ATM. In unperturbed A-T neurons a set of genes (FN1, DCN, RASGRF1, FZD1, EOMES, SHH, NR2E1) implicated in the development, maintenance and physiology of central nervous system was specifically downregulated, underscoring their potential involvement in the neurodegenerative process in A-T patients

    Theoretical interpretation of the experimental electronic structure of lens shaped, self-assembled InAs/GaAs quantum dots

    Full text link
    We adopt an atomistic pseudopotential description of the electronic structure of self-assembled, lens shaped InAs quantum dots within the ``linear combination of bulk bands'' method. We present a detailed comparison with experiment, including quantites such as the single particle electron and hole energy level spacings, the excitonic band gap, the electron-electron, hole-hole and electron hole Coulomb energies and the optical polarization anisotropy. We find a generally good agreement, which is improved even further for a dot composition where some Ga has diffused into the dots.Comment: 16 pages, 5 figures. Submitted to Physical Review
    • …
    corecore